Взаимно простые числа. §3. Взаимно простые числа и их свойства Какие числа взаимно простые примеры

Кроме ±1.

  • 14 и 25 взаимно просты, так как у них нет общих делителей;
  • 15 и 25 не взаимно просты, так как у них имеется общий делитель 5;

Наглядное представление: если на плоскости построить «лес», установив на точки с целыми координатами «деревья» нулевой толщины, то из начала координат видны только деревья, координаты которых взаимно просты, см. рисунок справа как пример видимости «дерева» с координатами (9, 4).

Обозначения

Для указания взаимной простоты чисел m {\displaystyle m} и n {\displaystyle n} используется обозначение :

m ⊥ n . {\displaystyle m\perp n.}

Однако не все математики признают и используют это обозначение. Чаще всего используется словесная формулировка или эквивалентная запись gcd (a , b) = 1 {\displaystyle \gcd(a,b)=1} , что означает: «наибольший общий делитель чисел a и b равен 1».

Связанные определения

  • Если в наборе чисел любые два числа взаимно просты, то такие числа называются попарно взаимно простыми . Для двух чисел понятия «взаимно простые» и «попарно взаимно простые» совпадают.

Примеры

  • 8, 15 - не простые, но взаимно простые.
  • 6, 8, 9 - взаимно простые (в совокупности) числа, но не попарно взаимно простые.
  • 8, 15, 49 - попарно взаимно простые.

Свойства

  • Числа a {\displaystyle a} и b {\displaystyle b} взаимно просты тогда и только тогда , когда выполняется одно из эквивалентных условий:
  • Любые два (различные) простые числа взаимно просты.
  • Если a {\displaystyle a} - делитель произведения b c {\displaystyle bc} , и a {\displaystyle a} взаимно просто с b {\displaystyle b} , то a {\displaystyle a} - делитель c {\displaystyle c} .
  • Если числа a 1 , … , a n {\displaystyle a_{1},\ldots ,a_{n}} - попарно взаимно простые числа, то НОК (a 1 , … , a n) = | a 1 ⋅ … ⋅ a n | {\displaystyle (a_{1},\ldots ,a_{n})=|a_{1}\cdot \ldots \cdot a_{n}|} . Например, НОК (9 , 11) = 9 ⋅ 11 = 99 {\displaystyle (9,11)=9\cdot 11=99} .
  • Вероятность того, что любые k {\displaystyle k} случайным образом выбранных положительных целых чисел будут взаимно просты, равна , в том смысле, что при N → ∞ {\displaystyle N\to \infty } вероятность того, что k {\displaystyle k} положительных целых чисел, меньших, чем N {\displaystyle {\textstyle {N}}} (и выбранных случайным образом) будут взаимно простыми, стремится к 1 ζ (k) {\displaystyle {\dfrac {1}{\zeta (k)}}} . Здесь ζ (k) {\displaystyle \zeta (k)} - это

Натуральные числа a и b называют взаимно простыми , если их наибольший общий делитель равен 1 (НОД(a ; b ) = 1). Другими словами, если числа a и b не имеют никаких общих делителей, кроме 1, то они взаимно просты.

Примеры пар взаимно простых чисел: 2 и 5, 13 и 16, 35 и 88 и т. п. Можно указать несколько взаимно простых чисел, например, числа 7, 9, 16 – взаимно просты.

Часто взаимно простые числа обозначают так: (a , b ) = 1. Например, (23, 30) = 1. Эта запись как бы является сокращенной записью обозначения наибольшего общего делителя двух чисел (НОД(23, 30) = 1), и говорит о том, что их наибольший общий делитель равен 1.

Два соседних натуральных числа всегда будут взаимно просты. Например, 15 и 16 - пара взаимно простых чисел, также как 16 и 17. Это легко понять, если принять во внимание «правило» о том, что если два натуральных числа a и b делятся на одно и то же натуральное число большее 1 (n > 1), то и их разница также должна делится на это число n (здесь имеется в виду, что a , b и их разность делятся нацело, т. е. кратны числу n ). Но если a и b два соседних числа (пусть a < b ), то b – a = 1; но 1 делится только на 1 (из ряда натуральных чисел). Следовательно, a и b не имеют других общих делителей, кроме 1.

Из определения взаимно простых чисел и простых чисел также следует, что разные простые числа всегда оказываются взаимно простыми . Ведь делителями любого простого числа являются лишь оно само и 1.

Свойства взаимно простых чисел

  • Наименьшее общее кратное (НОК) пары взаимно простых чисел равно их произведению. Например, (3, 8) = 1 (это значит взаимно просты), следовательно, их НОК равен 3 × 8 = 24 (НОК(3, 8) = 24). Действительно, вы не найдете меньшее число, чем 24, которое было бы кратно и 3 и 8.
  • Если числа a и b взаимно просты и число c кратно как a , так и b , то это число будет кратно и произведению ab . Это можно записать так: если с a и c b , то c ab . Например, (3, 10) = 1, число 60 кратно как 3, так и 10, а также кратно 30 (3 × 10).
  • Если числа a и b взаимно просты и взято число c кратное b (c b ), то произведение ac также будет также кратно b (ac b ). Например, (2, 17) = 1, пусть c = 34. Число 34 кратно b = 17, тогда ac = 2 × 34 = 68. Проверяем: 68 ÷ 17 = 4, т. е. делится нацело, а значит 68 кратно 17.

Обычно выделяют больше свойств, чем приведено здесь. Кроме того, свойства взаимно простых чисел формулируются по разному. Также бывает требуется доказать эти свойства (в данном случае доказательства не приводятся).

$p$ называется простым числом, если у него только $2$ делителя: $1$ и оно само.

Делителем натурального числа $a$ называют натуральное число, на которое исходное число $a$ делится без остатка.

Пример 1

Найти делители числа $6$.

Решение: Нам надо найти все числа, на которые заданное число $6$ делится без остатка. Это будут числа: $1,2,3, 6$. Значит делителем числа $6$ будут числа $1,2,3,6.$

Ответ: $1,2,3,6$.

Значит, для того, чтобы найти делители числа надо найти все натуральные числа, на которые данное делится без остатка. Нетрудно заметить, что число $1$ будет являться делителем любого натурального числа.

Определение 2

Составным называют число, у которого кроме единицы и самого себя есть другие делители.

Примером простого числа может являться число $13$, примером составного число $14.$

Замечание 1

Число $1$ имеет только один делитель-само это число, поэтому его не относят ни к простым, ни к составным.

Взаимно простые числа

Определение 3

Взаимно простыми числами называются те, у которых НОД равен $1$.Значит для выяснения будут ли являться числа взаимно простыми необходимо найти их НОД и сравнить его с $1$.

Попарно взаимно простые

Определение 4

Если в наборе чисел любые два взаимно просты, то такие числа называются попарно взаимно простыми . Для двух чисел понятия «взаимно простые» и «попарно взаимно простые» совпадают.

Пример 2

$8, 15$ - не простые, но взаимно простые.

$6, 8, 9$ - взаимно простые числа, но не попарно взаимно простые.

$8, 15, 49$ - попарно взаимно простые.

Как мы видим, для того, чтобы определить являются ли числа взаимно простыми, необходимо сначала разложить их на простые множители. Обратим внимание на то, как правильно это сделать.

Разложение на простые множители

Например, разложим на простые множители число $180$:

$180=2\cdot 2\cdot 3\cdot 3\cdot 5$

Воспользуемся свойством степеней, тогда получим,

$180=2^2\cdot 3^2\cdot 5$

Такая запись разложения на простые множители называется канонической, т.е. для того чтобы разложить в канонической форме число на множители необходимо воспользоваться свойством степеней и представить число в виде произведения степеней с разными основаниями

Каноническое разложение натурального числа в общем виде

Каноническое разложение натурального числа в общем виде имеет вид:

$m=p^{n1}_1\cdot p^{n2}_2\cdot \dots \dots ..\cdot p^{nk}_k$

где $p_1,p_2\dots \dots .p_k$- простые числа, а показатели степеней- натуральные числа.

Представление числа в виде канонического разложения на простые множества облегчает нахождение наибольшего общего делителя чисел, и выступает как следствие доказательства или определения взаимно простых чисел.

Пример 3

Найти наибольший общий делитель чисел $180$ и $240$.

Решение: Разложим числа на простые множества с помощью канонического разложения

$180=2\cdot 2\cdot 3\cdot 3\cdot 5$, тогда $180=2^2\cdot 3^2\cdot 5$

$240=2\cdot 2\cdot 2\cdot 2\cdot 3\cdot 5$, тогда $240=2^4\cdot 3\cdot 5$

Теперь найдем НОД этих чисел, для этого выберем степени с одинаковым основанием и с наименьшим показателем степени, тогда

$НОД \ (180;240)= 2^2\cdot 3\cdot 5=60$

Составим алгоритм нахождения НОД с учетом канонического разложения на простые множители .

Чтобы найти наибольший общий делитель двух чисел с помощью канонического разложения, необходимо:

  1. разложить числа на простые множители в каноническом виде
  2. выбрать степени с одинаковым основанием и с наименьшим показателем степени входящих в состав разложения этих чисел
  3. Найти произведение чисел, найденных на шаге 2.Полученное число и будет искомым наибольшим общим делителем.

Пример 4

Определить, будут ли простыми, взаимно простыми числами числа $195$ и $336$.

    $195=3\cdot 5\cdot 13$

    $336=2\cdot 2\cdot 2\cdot 2\cdot 3\cdot 7=2^4\cdot 3\cdot 5$

    $НОД \ (195;336) =3\cdot 5=15$

Мы видим, что НОД этих чисел отличен от $1$, значит числа не взаимно простые. Также мы видим, что в состав каждого из чисел входят множители, помимо $1$ и самого числа, значит простыми числа так же являться не будут, а будут являться составными.

Пример 5

Определить, будут ли простыми, взаимно простыми числами числа $39$ и $112$.

Решение: Воспользуемся для разложения на множители каноническим разложением:

    $112=2\cdot 2\cdot 2\cdot 2\cdot 7=2^4\cdot 7$

    $НОД \ (39;112)=1$

Мы видим, что НОД этих чисел равен $1$, значит числа взаимно простые. Также мы видим, что в состав каждого из чисел входят множители, помимо $1$ и самого числа, значит простыми числа так же являться не будут, а будут являться составными.

Пример 6

Определить будут ли простыми, взаимно простыми числами числа $883$ и $997$.

Решение: Воспользуемся для разложения на множители каноническим разложением:

    $883=1\cdot 883$

    $997=1\cdot 997$

    $НОД \ (883;997)=1$

Мы видим, что НОД этих чисел равен $1$, значит числа взаимно простые. Также мы видим, что в состав каждого из чисел входят только множители, равные $1$ и самому числу, значит числа будут являться простыми.

$p$ называется простым числом, если у него только $2$ делителя: $1$ и оно само.

Делителем натурального числа $a$ называют натуральное число, на которое исходное число $a$ делится без остатка.

Пример 1

Найти делители числа $6$.

Решение: Нам надо найти все числа, на которые заданное число $6$ делится без остатка. Это будут числа: $1,2,3, 6$. Значит делителем числа $6$ будут числа $1,2,3,6.$

Ответ: $1,2,3,6$.

Значит, для того, чтобы найти делители числа надо найти все натуральные числа, на которые данное делится без остатка. Нетрудно заметить, что число $1$ будет являться делителем любого натурального числа.

Определение 2

Составным называют число, у которого кроме единицы и самого себя есть другие делители.

Примером простого числа может являться число $13$, примером составного число $14.$

Замечание 1

Число $1$ имеет только один делитель-само это число, поэтому его не относят ни к простым, ни к составным.

Взаимно простые числа

Определение 3

Взаимно простыми числами называются те, у которых НОД равен $1$.Значит для выяснения будут ли являться числа взаимно простыми необходимо найти их НОД и сравнить его с $1$.

Попарно взаимно простые

Определение 4

Если в наборе чисел любые два взаимно просты, то такие числа называются попарно взаимно простыми . Для двух чисел понятия «взаимно простые» и «попарно взаимно простые» совпадают.

Пример 2

$8, 15$ - не простые, но взаимно простые.

$6, 8, 9$ - взаимно простые числа, но не попарно взаимно простые.

$8, 15, 49$ - попарно взаимно простые.

Как мы видим, для того, чтобы определить являются ли числа взаимно простыми, необходимо сначала разложить их на простые множители. Обратим внимание на то, как правильно это сделать.

Разложение на простые множители

Например, разложим на простые множители число $180$:

$180=2\cdot 2\cdot 3\cdot 3\cdot 5$

Воспользуемся свойством степеней, тогда получим,

$180=2^2\cdot 3^2\cdot 5$

Такая запись разложения на простые множители называется канонической, т.е. для того чтобы разложить в канонической форме число на множители необходимо воспользоваться свойством степеней и представить число в виде произведения степеней с разными основаниями

Каноническое разложение натурального числа в общем виде

Каноническое разложение натурального числа в общем виде имеет вид:

$m=p^{n1}_1\cdot p^{n2}_2\cdot \dots \dots ..\cdot p^{nk}_k$

где $p_1,p_2\dots \dots .p_k$- простые числа, а показатели степеней- натуральные числа.

Представление числа в виде канонического разложения на простые множества облегчает нахождение наибольшего общего делителя чисел, и выступает как следствие доказательства или определения взаимно простых чисел.

Пример 3

Найти наибольший общий делитель чисел $180$ и $240$.

Решение: Разложим числа на простые множества с помощью канонического разложения

$180=2\cdot 2\cdot 3\cdot 3\cdot 5$, тогда $180=2^2\cdot 3^2\cdot 5$

$240=2\cdot 2\cdot 2\cdot 2\cdot 3\cdot 5$, тогда $240=2^4\cdot 3\cdot 5$

Теперь найдем НОД этих чисел, для этого выберем степени с одинаковым основанием и с наименьшим показателем степени, тогда

$НОД \ (180;240)= 2^2\cdot 3\cdot 5=60$

Составим алгоритм нахождения НОД с учетом канонического разложения на простые множители .

Чтобы найти наибольший общий делитель двух чисел с помощью канонического разложения, необходимо:

  1. разложить числа на простые множители в каноническом виде
  2. выбрать степени с одинаковым основанием и с наименьшим показателем степени входящих в состав разложения этих чисел
  3. Найти произведение чисел, найденных на шаге 2.Полученное число и будет искомым наибольшим общим делителем.

Пример 4

Определить, будут ли простыми, взаимно простыми числами числа $195$ и $336$.

    $195=3\cdot 5\cdot 13$

    $336=2\cdot 2\cdot 2\cdot 2\cdot 3\cdot 7=2^4\cdot 3\cdot 5$

    $НОД \ (195;336) =3\cdot 5=15$

Мы видим, что НОД этих чисел отличен от $1$, значит числа не взаимно простые. Также мы видим, что в состав каждого из чисел входят множители, помимо $1$ и самого числа, значит простыми числа так же являться не будут, а будут являться составными.

Пример 5

Определить, будут ли простыми, взаимно простыми числами числа $39$ и $112$.

Решение: Воспользуемся для разложения на множители каноническим разложением:

    $112=2\cdot 2\cdot 2\cdot 2\cdot 7=2^4\cdot 7$

    $НОД \ (39;112)=1$

Мы видим, что НОД этих чисел равен $1$, значит числа взаимно простые. Также мы видим, что в состав каждого из чисел входят множители, помимо $1$ и самого числа, значит простыми числа так же являться не будут, а будут являться составными.

Пример 6

Определить будут ли простыми, взаимно простыми числами числа $883$ и $997$.

Решение: Воспользуемся для разложения на множители каноническим разложением:

    $883=1\cdot 883$

    $997=1\cdot 997$

    $НОД \ (883;997)=1$

Мы видим, что НОД этих чисел равен $1$, значит числа взаимно простые. Также мы видим, что в состав каждого из чисел входят только множители, равные $1$ и самому числу, значит числа будут являться простыми.


Информация этой статьи покрывает тему «взаимно простые числа ». Сначала дано определение двух взаимно простых чисел, а также определение трех и большего количества взаимно простых чисел. После этого приведены примеры взаимно простых чисел, и показано, как доказать, что данные числа являются взаимно простыми. Дальше перечислены и доказаны основные свойства взаимно простых чисел. В заключение упомянуты попарно простые числа, так как они тесно связаны со взаимно простыми числами.

Навигация по странице.

Часто встречаются задания, в которых требуется доказать, что данные целые числа являются взаимно простыми. Доказательство сводится к вычислению наибольшего общего делителя данных чисел и проверке НОД на его равенство единице. Полезно также перед вычислением НОД заглянуть в таблицу простых чисел : вдруг исходные целые числа являются простыми, а мы знаем, что наибольший общий делитель простых чисел равен единице. Рассмотрим решение примера.

Пример.

Докажите, что числа 84 и 275 являются взаимно простыми.

Решение.

Очевидно, что данные числа не являются простыми, поэтому мы не можем сразу говорить о взаимной простоте чисел 84 и 275 , и нам придется вычислять НОД. Используем алгоритм Евклида для нахождения НОД : 275=84·3+23 , 84=23·3+15 , 23=15·1+8 , 15=8·1+7 , 8=7·1+1 , 7=7·1 , следовательно, НОД(84, 275)=1 . Этим доказано, что числа 84 и 275 взаимно простые.

Определение взаимно простых чисел можно расширить для трех и большего количества чисел.

Определение.

Целые числа a 1 , a 2 , …, a k , k>2 называются взаимно простыми , если наибольший общий делитель этих чисел равен единице.

Из озвученного определения следует, что если некоторый набор целых чисел имеет положительный общий делитель, отличный от единицы, то данные целые числа не являются взаимно простыми.

Приведем примеры. Три целых числа −99 , 17 и −27 являются взаимно простыми. Любая совокупность простых чисел составляет набор взаимно простых чисел, к примеру, 2 , 3 , 11 , 19 , 151 , 293 и 677 – взаимно простые числа. А четыре числа 12 , −9 , 900 и −72 не являются взаимно простыми, так как они имеют положительный общий делитель 3 , отличный от 1 . Числа 17 , 85 и 187 тоже не взаимно простые, так как каждое из них делится на 17 .

Обычно далеко не очевидно, что некоторые числа являются взаимно простыми, и этот факт приходится доказывать. Для выяснения, являются ли данные числа взаимно простыми, приходится находить наибольший общий делитель этих чисел, и на основании определения взаимно простых чисел делать вывод.

Пример.

Являются ли числа 331 , 463 и 733 взаимно простыми?

Решение.

Заглянув в таблицу простых чисел, мы обнаружим, что каждое из чисел 331 , 463 и 733 – простое. Следовательно, они имеют единственный положительный общий делитель – единицу. Таким образом, три числа 331 , 463 и 733 есть взаимно простые числа.

Ответ:

Да.

Пример.

Докажите, что числа −14 , 105 , −2 107 и −91 не являются взаимно простыми.

Решение.

Чтобы доказать, что данные числа не взаимно простые, можно найти их НОД и убедиться, что он не равен единице. Так и поступим.

Так как делители целых отрицательных чисел совпадают с делителями соответствующих , то НОД(−14, 105, 2 107, −91)= НОД(14, 105, 2 107, 91) . Обратившись к материалу статьи нахождение наибольшего общего делителя трех и большего количества чисел , выясняем, что НОД(14, 105, 2 107, 91)=7 . Следовательно, наибольший общий делитель исходных чисел равен семи, поэтому эти числа не являются взаимно простыми.

Свойства взаимно простых чисел

Взаимно простые числа обладают рядом свойств. Рассмотрим основные свойства взаимно простых чисел .

    Числа, полученные при делении целых чисел a и b на их наибольший общий делитель, являются взаимно простыми, то есть, a:НОД(a, b) и b:НОД(a, b) – взаимно простые.

    Это свойство мы доказали, когда разбирали свойства НОД .

    Рассмотренное свойство взаимно простых чисел позволяет находить пары взаимно простых чисел. Для этого достаточно взять два любых целых числа и разделить их на наибольший общий делитель, полученные числа будут взаимно простыми.

    Для того чтобы целые числа a и b были взаимно простыми необходимо и достаточно, чтобы существовали такие целые числа u 0 и v 0 , что a·u 0 +b·v 0 =1 .

    Докажем сначала необходимость.

    Пусть числа a и b взаимно простые. Тогда по определению взаимно простых чисел НОД(a, b)=1 . А из свойств НОД мы знаем, что для целых чисел a и b верно соотношение Безу a·u 0 +b·v 0 =НОД(a, b) . Следовательно, a·u 0 +b·v 0 =1 .

    Осталось доказать достаточность.

    Пусть верно равенство a·u 0 +b·v 0 =1 . Так как НОД(a, b) делит и a и b , то НОД(a, b) в силу свойств делимости должен делить сумму a·u 0 +b·v 0 , а значит, и единицу. А это возможно только когда НОД(a, b)=1 . Следовательно, a и b – взаимно простые числа.

    Следующее свойство взаимно простых чисел таково: если числа a и b взаимно простые, и произведение a·c делится на b , то c делится на b .

    Действительно, так как a и b взаимно простые, то из предыдущего свойства мы имеем равенство a·u 0 +b·v 0 =1 . Умножив обе части этого равенства на c , имеем a·c·u 0 +b·c·v 0 =c . Первое слагаемое суммы a·c·u 0 +b·c·v 0 делится на b , так как a·c делится на b по условию, второе слагаемое этой суммы также делится на b , так как один из множителей равен b , следовательно, вся сумма делится на b . А так как сумма a·c·u 0 +b·c·v 0 равна c , то и c делится на b .

    Если числа a и b взаимно простые, то НОД(a·c, b)=НОД(c, b) .

    Покажем, во-первых, что НОД(a·c, b) делит НОД(c, b) , а во-вторых, что НОД(c, b) делит НОД(a·c, b) , это и будет доказывать равенство НОД(a·c, b)=НОД(c, b) .

    НОД(a·c, b) делит и a·c и b , а так как НОД(a·c, b) делит b , то он также делит и b·c . То есть, НОД(a·c, b) делит и a·c и b·c , следовательно, в силу свойств наибольшего общего делителя он делит и НОД(a·c, b·c) , который по свойствам НОД равен c·НОД(a, b)=c . Таким образом, НОД(a·c, b) делит и b и c , следовательно, делит и НОД(c, b) .

    С другой стороны, НОД(c, b) делит и c и b , а так как он делит с , то также делит и a·c . Таким образом, НОД(c, b) делит и a·c и b , следовательно, делит и НОД(a·c, b) .

    Так мы показали, что НОД(a·c, b) и НОД(c, b) взаимно делят друг друга, значит, они равны.

    Если каждое из чисел a 1 , a 2 , …, a k взаимно просто с каждым из чисел b 1 , b 2 , …, b m (где k и m – некоторые натуральные числа), то произведения a 1 ·a 2 ·…·a k и b 1 ·b 2 ·…·b m есть взаимно простые числа, в частности, если a 1 =a 2 =…=a k =a и b 1 =b 2 =…=b m =b , то a k и b m – взаимно простые числа.

    Предыдущее свойство взаимно простых чисел позволяет нам записать ряд равенств вида НОД(a 1 ·a 2 ·…·a k , b m)= НОД(a 2 ·…·a k , b m)=…=НОД(a k , b m)=1 , где последний переход возможен, так как a k и b m взаимно простые числа по условию. Итак, НОД(a 1 ·a 2 ·…·a k , b m)=1 .

    Теперь, обозначив a 1 ·a 2 ·…·a k =A , имеем
    НОД(b 1 ·b 2 ·…·b m , a 1 ·a 2 ·…·a k)= НОД(b 1 ·b 2 ·…·b m , A)=
    =НОД(b 2 ·…·b m , A)=… =НОД(b m , A)=1

    (последний переход справедлив, в силу последнего равенства из предыдущего абзаца). Так мы получили равенство НОД(b 1 ·b 2 ·…·b m , a 1 ·a 2 ·…·a k)=1 , которое доказывает, что произведения a 1 ·a 2 ·…·a k и b 1 ·b 2 ·…·b m являются взаимно простыми числами.

На этом закончим обзор основных свойств взаимно простых чисел.

Попарно простые числа – определения и примеры

Через взаимно простые числа дается определение попарно простых чисел .

Определение.

Целые числа a 1 , a 2 , …, a k , каждое из которых взаимно просто со всеми остальными, называют попарно простыми числами .

Приведем пример попарно простых чисел. Числа 14 , 9 , 17 , и −25 – попарно простые, так как пары чисел 14 и 9 , 14 и 17 , 14 и −25 , 9 и 17 , 9 и −25 , 17 и −25 представляют собой взаимно простые числа. Здесь же заметим, что попарно простые числа всегда являются взаимно простыми.

С другой стороны, взаимно простые числа далеко не всегда являются попарно простыми, это подтверждает следующий пример. Числа 8 , 16 , 5 и 15 не являются попарно простыми, так как числа 8 и 16 не взаимно простые. Однако, числа 8 , 16 , 5 и 15 – взаимно простые. Таким образом, 8 , 16 , 5 и 15 – взаимно простые числа, но не попарно простые.

Следует особо выделить совокупность некоторого количества простых чисел. Эти числа всегда являются и взаимно простыми и попарно простыми. Например, 71 , 443 , 857 , 991 – и попарно простые, и взаимно простые числа.

Также понятно, что когда речь идет о двух целых числах, то для них понятия «попарно простые» и «взаимно простые» совпадают.

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.
  • Виноградов И.М. Основы теории чисел.
  • Михелович Ш.Х. Теория чисел.
  • Куликов Л.Я. и др. Сборник задач по алгебре и теории чисел: Учебное пособие для студентов физ.-мат. специальностей педагогических институтов.