Абсолютные предельные звездные величины: описание, шкала и яркость. Звёздная величина На что указывает звездная величина

Продолжим нашу алгебраическую экскурсию к небесным светилам. В той шкале, которая применяется для оценки блеска звёзд, могут, помимо неподвижных звёзд; найти себе место и другие светила – планеты, Солнце, Луна. О яркости планет мы побеседуем особо; здесь же укажем звёздную величину Солнца и Луны. Звёздная величина Солнца выражается числом минус 26,8, а полной1) Луны – минус 12,6. Почему оба числа отрицательные, читателю, надо думать, понятно после всего сказанного ранее. Но, быть может, его приведёт в недоумение недостаточно большая разница между звёздной величиной Солнца и Луны: первая «всего вдвое больше второй».

Не забудем, однако, что обозначение звёздной величины есть, в сущности, некоторый логарифм (при основании 2,5). И как нельзя, сравнивая числа, делить один на другой их логарифмы, так не имеет никакого смысла, сравнивая между собой звёздные величины, делить одно число на другое. Каков результат правильного сравнения, показывает следующий расчёт.

Если звёздная величина Солнца «минус 26,8», то это значит, что Солнце ярче звезды первой величины

в 2,527,8 раза. Луна же ярче звезды первой величины

в 2,513,6 раза.

Значит, яркость Солнца больше яркости полной Луны в

2,5 27,8 2,5 14,2 раза. 2,5 13,6

Вычислив эту величину (с помощью таблиц логарифмов), получаем 447 000. Вот, следовательно, правильное отношение яркостей Солнца и Луны: дневное светило в ясную погоду освещает Землю в 447 000 раз сильнее, чем полная Луна в безоблачную ночь.

Считая, что количество теплоты, отбрасываемое Луной, пропорционально количеству рассеиваемого ею света, – а это, вероятно, близко к истине, – надо признать, что Луна посылает нам и теплоты в 447 000 раз меньше, чем Солнце. Известно, что каждый квадратный сантиметр на границе земной атмосферы получает от Солнца около 2 малых калорий теплоты в 1 минуту. Значит, Луна посылает на 1 см2 Земли ежеминутно не более 225 000-й доли малой калории (т. е. может нагреть 1 г воды в 1 минуту на 225 000-ю часть градуса). Отсюда видно, насколько не обоснованы все попытки приписать лунному свету какое-либо влияние на земную погоду2) .

1) В первой и в последней четверти звёздная величина Луны минус 9.

2) Вопрос о том, может ли Луна влиять на погоду своим притяжением, будет рассмотрен в конце книги (см. «Луна и погода»).

Распространённое убеждение, что облака нередко тают под действием лучей полной Луны, – грубое заблуждение, объясняемое тем, что исчезновение облаков в ночное время (обусловленное другими причинами) становится заметным лишь при лунном освещении.

Оставим теперь Луну и вычислим, во сколько раз Солнце ярче самой блестящей звезды всего неба – Сириуса. Рассуждая так же, как и раньше, получаем отношение их блеска:

2,5 27,8

2,5 25,2

2,52,6

т. е. Солнце ярче Сириуса в 10 миллиардов раз.

Очень интересен также следующий расчёт: во сколько раз освещение, даваемое полной Луной, ярче совокупного освещения всего звёздного неба, т. е. всех звёзд, видимых простым глазом на одном небесном полушарии? Мы уже вычислили, что звёзды от первой до шестой величины включительно светят вместе так, как сотня звёзд первой величины. Задача, следовательно, сводится к вычислению того, во сколько раз Луна ярче сотни звёзд первой величины.

Это отношение равно

2,5 13,6

100 2700.

Итак, в ясную безлунную ночь мы получаем от звёздного неба лишь 2700-ю долю того света, какой посылает полная Луна, и в 2700×447 000, т. е. в 1200 миллионов раз меньше, чем даёт в безоблачный день Солнце.

Прибавим ещё, что звёздная величина нормальной международной

«свечи» на расстоянии 1 м равна минус 14,2, значит, свеча на указанном расстоянии освещает ярче полной Луны в 2,514,2-12,6 т. е. в четыре раза.

Небезынтересно, может быть, отметить ещё что прожектор авиационного маяка силой в 2 миллиарда свечей виден был бы с расстояния Луны звездой 4½-й величины, т. е. мог бы различаться невооружённым глазом.

Истинный блеск звёзд и Солнца

Все оценки блеска, которые мы делали до сих пор, относились только к их видимому блеску. Приведённые числа выражают блеск светил на тех расстояниях, на каких каждое из них в действительности находится. Но мы хорошо знаем, что звёзды удалены от нас неодинаково; видимый блеск звёзд говорит нам поэтому как об их истинном блеске, так и об их удалении от нас, – вернее, ни о том, ни о другом, пока мы не расчленим оба фактора. Между тем важно знать, каков был бы сравнительный блеск или, как говорят, «светимость» различных звёзд, если бы они находились от нас на одинаковом расстоянии.

Ставя так вопрос, астрономы вводят понятие об «абсолютной» звёздной величине звёзд. Абсолютной звёздной величиной звезды называется та, которую звезда имела бы, если бы находилась от нас на рас-

стоянии 10 «парсеков». Парсек – особая мера длины, употребляемая для звёздных расстояний; о её происхождении мы побеседуем позднее особо, здесь скажем лишь, что один парсек составляет около 30 800 000 000 000 км. Самый расчёт абсолютной звёздной величины произвести нетрудно, если знать расстояние звезды и принять во внимание, что блеск должен убывать пропорционально квадрату расстояния1) .

Мы познакомим читателя с результатом лишь двух таких расчётов: для Сириуса и для нашего Солнца. Абсолютная величина Сириуса +1,3, Солнца +4,8. Это значит, что с расстояния 30 800 000 000 000 км Сириус сиял бы нам звездой 1,3-й величины, а паше Солнце 4,8-й величины, т. е. слабее Сириуса в

2,5 3,8 2,53,5 25 раз,

2,50,3

хотя видимый блеск Солнца в 10 000 000 000 раз больше блеска Сириуса.

Мы убедились, что Солнце – далеко не самая яркая звезда неба. Не следует, однако, считать наше Солнце совсем пигмеем среди окружающих его звёзд: светимость его всё же выше средней. По данным звёздной статистики, средними по светимости из звёзд, окружающих Солнце до расстояния 10 парсеков, являются звёзды девятой абсолютной величины. Так как абсолютная величина Солнца равна 4,8, то оно ярче, нежели средняя из «соседних» звёзд, в

2,58

2,54,2

50 раз.

2,53,8

Будучи в 25 раз абсолютно тусклее Сириуса, Солнце оказывается всё же в 50 раз ярче, чем средние из окружающих его звёзд.

Самая яркая звезда из известных

Самой большой светимостью обладает недоступная простому глазу звёздочка восьмой величины в созвездии Золотой Рыбы, обозначаемая

1) Вычисление можно выполнить по следующей формуле, происхождение которой станет ясно читателю, когда немного позднее он познакомится ближе с «парсеком» и «параллаксом»:

Здесь М – абсолютная величина звезды, m – её видимая величина, π – параллакс звезды в

секундах. Последовательные преобразования таковы: 2,5M = 2,5m · 100π 2 ,

M lg 2,5 = m lg 2,5 + 2 + 2 lg π , 0,4M = 0,4m +2 + 2 lg π ,

M = m + 5 + 5 lg π .

Для Сириуса, например, m = –1,6π = 0",38. Поэтому его абсолютная величина

M = –l,6 + 5 + 5 lg 0,38 = 1,3.

латинской буквой S. Созвездие Золотой Рыбы находится в южном полушарии неба и не видно в умеренном поясе нашего полушария. Упомянутая звёздочка входит в состав соседней с нами звёздной системы – Малого Магелланова Облака, расстояние которого от нас оценивается примерно в 12 000 раз больше, чем расстояние до Сириуса. На таком огромном удалении звезда должна обладать совершенно исключительной светимостью, чтобы казаться даже восьмой величины. Сириус, заброшенный так же глубоко в пространстве, сиял бы звездой 17-й величины, т. е. был бы едва виден в самый могущественный телескоп.

Какова же светимость этой замечательной звезды? Расчёт даёт такой результат: минус восьмая величина. Это значит, что наша звезда абсолютно в: 400 000 раз (примерно) ярче Солнца! При такой исключительной яркости звезда эта, будучи помещена на расстоянии Сириуса, казалась бы на девять величин ярче его, т. е. имела бы примерно яркость Луны в фазе четверти! Звезда, которая с расстояния Сириуса могла бы заливать Землю таким ярким светом, имеет бесспорное право считаться самой яркой из известных нам звёзд.

Звёздная величина планет на земном и чужом небе

Возвратимся теперь к мысленному путешествию на другие планеты (проделанному нами в разделе «Чужие небеса») и оценим более точно блеск сияющих там светил. Прежде всего укажем звёздные величины планет в максимуме их блеска на земном небе. Вот табличка.

На небе Земли:

Венера.............................

Сатурн..............................

Марс..................................

Уран..................................

Юпитер...........................

Нептун.............................

Меркурий......................

Просматривая её, видим, что Венера ярче Юпитера почти на две звёздные величины, т. е. в 2,52 = 6,25 раза, а Сириуса в 2,5-2,7 = 13 раз

(блеск Сириуса – 1,6-й величины). Из той же таблички видно, что тусклая планета Сатурн всё же ярче всех неподвижных звёзд, кроме Сириуса и Канопуса. Здесь мы находим объяснение тому факту, что планеты (Венера, Юпитер) бывают иногда днём видны простым глазом, звёзды же при дневном свете совершенно недоступны невооружённому зрению.

Представляем вашему вниманию несколько терминов, с которыми ваши познания в астрономии станут более глубокими.

Видимая звездная величина

Количество звезд на ночном небе, доступных невооруженному взгляду, не так велико, как кажется. Если иметь хорошую остроту зрения и выбраться за город, подальше от уличного освещения, то для наблюдения будут доступны около 6000 звезд. При этом половина из них всегда будет скрыта от наблюдателя за горизонтом. Но даже этого количества достаточно, чтобы заметить, насколько звезды отличаются по своей яркости. Замечали это и античные ученые. Живший во II веке до нашей эры древнегреческий математик и астроном Гиппарх разделил все наблюдаемые им звезды на шесть величин. Самые яркие он отнес к первой величине, самые тусклые – к шестой. В целом, этот принцип используется и сейчас. Но сегодня возможности астрономии позволяют наблюдать бесчисленное количество звезд, большинство из которых настолько тусклые, что наблюдать невооруженным взглядом их невозможно. А само понятие звездной величины применяется не только для далеких звезд, но и для других объектов – Солнца, Луны, искусственных спутников, планет и так далее. Поэтому и считается, что звездная величина – это безразмерная числовая характеристика яркости объекта.

Как следует из вышесказанного, видимая звездная величина самых ярких объектов будет отрицательная. Для сравнения, звездная величина Солнца равна –26,7, а звездная величина ближайшей к нашему светилу, но не видимой невооруженным взглядом звезды Проксима Центавра составляет +11,1. Максимальная звездная величина Марса равна? 2,91. Спутник «Маяк», который создали и планируют отправить на орбиту молодые российские ученые, как запланировано должен иметь звездную величину не более?10. И если все удастся, он на некоторое время станет самым ярким объектом на ночном небе, если, конечно, не считать Луны в полнолуние (?12,74).

Абсолютная звездная величина

Денеб – одна из самых больших звезд, известных науке, имеет звездную величину +1,25. Ее диаметр примерно равен диаметру орбиты Земли и больше диаметра Солнца в 110 раз. Расстояние до этого исполина – 1 640 световых лет. Хотя ученые еще спорят по этому вопросу, уж очень это далеко. Большинство звезд, находящихся на таком удалении, можно увидеть только в телескоп. Если бы мы были к этой звезде ближе, то и яркость Денеба на небе была бы куда выше. Тем самым видимая звездная величина зависит как от светимости объекта, так и от расстояния до него. Чтобы можно было сравнить светимость разных звезд между собой, используют абсолютную звездную величину. Для звезд она определяется как видимая звездная величина объекта, если бы он был расположен на расстоянии 10 парсек от наблюдателя. Если расстояние до звезды известно, то абсолютную звездную величину рассчитать несложно.

Абсолютная звездная величина Солнца составляет +4,8 (видимая, напомним, ?26,7). Сириус – самая яркая звезда ночного неба – имеет видимую величину?1,46, но абсолютную всего +1,4. Что, впрочем, неудивительно, ведь бриллиант ночного неба (как называют эту звезду) находится близко от нас: на расстоянии всего 8,6 световых лет. А вот абсолютная звездная величина уже упомянутого Денеба составляет?6,95.

Параллакс

Никогда не задумывались, как ученые определяют расстояние до звезды? Ведь лазерным дальномером это расстояние не измеришь. На самом деле, все просто. В течение года положение звезды на небе изменяется вследствие обращения Земли по орбите вокруг Солнца. Такое изменение называется годичным параллаксом звезды. Чем ближе звезда к нам, тем больше ее смещение на фоне звезд, которые находятся дальше. Но даже у ближайших звезд такое смещение чрезвычайно мало. Невозможность обнаружить параллакс у звезд в свое время была одним из аргументов против гелиоцентрической системы мира. Удалось это сделать только в XIX веке. В нынешнее время для измерения параллаксов, а следовательно и расстояний до звезд, на орбиты выводят специальные космические телескопы. Телескоп Hipparcos Европейского космического агентства (названный в честь того самого Гиппарха, который классифицировал звезды по яркости) позволил измерить параллаксы более 100 тысяч звезд. В декабре 2013 года выведен на орбиту его преемник Gaia.

Параллактическое смещение близких звезд на фоне далёких

Собственно, параллакс (а это не только астрономическое понятие) представляет собой изменение видимого положения объекта относительно удаленного фона (в нашем случае более дальних звезд) в зависимости от положения наблюдателя. Используется он и в геодезии. Имеет значение для фотографии. Измеряется параллакс в угловых секундах (секундах дуги).

Световой год

Мерить расстояния в космическом пространстве в километрах совсем не удобно. К примеру, расстояние до ближайшей к нам звезды Проксима Центавра? 4,01?1013километров (40,1 триллиона километров). Достаточно сложно представить это расстояние. Но если измерить это расстояние в световых годах, единице длины, равной расстоянию, проходимому светом за один год, то получится 4,2 световых года. Свет от этого красного карлика идет к нам примерно 4 года и 3 месяца. Все просто.

Парсек

А вот с другой единицей длины, применяемой в астрономии, не все так просто. Расстояние до звезды Проксима Центавра, измеренное в парсеках, составляет 1,3 единицы. Само слово «парсек» образовано из слов «параллакс» и «секунда» (имеется в виду угловая секунда, равная 1/3600 градуса, вспомните школьный транспортир). Тот самый параллакс, благодаря которому мы можем измерять расстояния до звезд. Парсек (обозначается «пк») ? это расстояние, с которого отрезок длиной в одну астрономическую единицу (радиус земной орбиты), перпендикулярный лучу зрения, виден под углом в одну угловую секунду.

Галактический рукав

Наш Млечный Путь имеет диаметр 100 000 световых лет. Он относится к одному из основных типов галактик. Млечный Путь – это спиральная галактика с перемычкой. Все звезды, которые мы видим на небе невооруженным взглядом, находятся в нашей Галактике. Всего Млечный Путь содержит, по разным оценкам, от 200 до 400 миллиардов звезд. Как же сориентироваться и узнать, где среди этих миллиардов звезд находится Солнце?

Млечный Путь – спиральная галактика, и она имеет спиральные галактические рукава, расположенные в плоскости диска. Галактический рукав – это структурный элемент спиральной галактики. Основное количество звезд, пыли и газа содержится именно в галактических рукавах.

Галактические рукава Млечного Пути

Таких рукавов несколько, но основные это рукав Стрельца, рукав Лебедя, рукав Персея, рукав Центавра и рукав Ориона. Такие названия они получили по имени созвездий, в которых можно наблюдать основной массив рукавов. Рукав Ориона, по сравнению с другими, небольшой. Иногда его даже называют Шпора Ориона. Его длина всего около 11 000 световых лет. Но для нас этот рукав примечателен тем, что Солнце и небольшая Голубая планета, обращающаяся вокруг него и являющаяся нашим домом, находятся именно в нем.

Апоцентр и перицентр

Большинство из известных орбит искусственных спутников и небесных тел эллиптические. А для любой эллиптической орбиты всегда можно указать точку, ближайшую к центральному телу и наиболее удаленную от него. Ближайшая точка называется перицентром, а наиболее удаленная – апоцентром.

Апоцентр (справа) и перицентр (слева)

Но, как правило, вместо слова «центр», после «пери-» или «апо-», подставляют название тела, вокруг которого происходит движение. Так, для орбит искусственных спутников Земли (Гея – на древнегреческом языке) и орбиты Луны применяют термины апогей и перигей. Для окололунной (Луна – Селена) орбиты иногда применяются апоселений и периселений. Ближайшая к Солнцу (Гелиос) точка орбиты нашей планеты или другого небесного тела Солнечной системы – перигелий, дальняя – афелий или апогелий. Для орбит вокруг других звезд (астрон – звезда) – периастр и апоастр.

Астрономическая единица

Перигелий орбиты нашей планеты (ближайшая точка орбиты к Солнцу) составляет 147 098 290 км (0,983 астрономических единиц), афелий – 152 098 232 км (1,017 астрономических единиц). А вот если взять среднее расстояние от Земли до Солнца, то получается удобная единица измерения в космосе. Для тех расстояний, где в километрах мерить уже неудобно, а в световых годах и парсеках еще неудобно. Такая единица измерения называется «астрономической единицей» (обозначается «а. е.») и применяется для определения расстояний между объектами Солнечной системы, внесолнечных систем, а также между компонентами двойных звезд. После нескольких уточнений астрономическая единица признана равной 149597870,7 километрам.

Тем самым Земля удалена от Солнца на расстояние 1 а. е., Нептун, самая далекая от Солнца планета, – на расстояние около 30 а. е. Расстояние от Солнца до самой близкой к нему планеты – Меркурия – всего 0,39 а. е. А в момент следующего великого противостояния Марса и Земли, 27 июля 2018 года, расстояние между планетами сократится до 0,386 а. е.

Предел Роша

В космосе нет ничего постоянного. Просто для изменения привычного нам порядка требуются миллионы лет. Так, если некий наблюдатель через несколько миллионов лет будет наблюдать Марс, то он может не обнаружить у него одного или даже двух его спутников. Как известно, больший из спутников красной планеты – Фобос – приближается к ней на 1,8 метра за столетие. Фобос движется на расстоянии всего около 9 000 км от Марса. Для сравнения, орбиты навигационных спутников находятся на высоте 19 400–23 222 км, геостационарная орбита – 35 786 км, а Луна, естественный спутник нашей планеты, находится от Земли на расстоянии 385 000 км.

Пройдет еще 10–11 миллионов лет, и Фобос перейдет свой предел Роша, в результате чего разрушится. Предел Роша, названный так по имени Эдуарда Роша, впервые рассчитавшего такие пределы для некоторых спутников, – это расстояние от планеты (звезды) до ее спутника, ближе которого спутник разрушается приливными силами. Как было установлено, сила притяжения планеты компенсируется центробежной силой только в центре масс спутника. В других точках спутника такого равенства сил нет, что и является причиной образования приливных сил. В результате действия приливных сил спутник сначала приобретает эллипсоидальную форму, а при прохождении предела Роша разрывается ими. А вот орбита другого спутника красной планеты – Деймоса (высота орбиты около 23 500 км) – с каждым разом все дальше. Рано или поздно он преодолеет притяжение Марса и отправится в самостоятельное странствие по Солнечной системе.

Ланиакея

Сможете ли вы сказать, где во Вселенной находится наша планета? Конечно, планета Земля находится в Солнечной системе, которая, в свою очередь, находится в Рукаве Ориона – небольшом галактическом рукаве Млечного Пути. Ну а дальше? Наша Галактика, ближайшие к нам галактика Андромеды, галактика Треугольника и еще более 50 галактик входят в так называемую Местную группу галактик, которая является составной сверхскопления Девы.

Ланиакея и Млечный путь

А вот уже сверхскопление Девы, называемое также Местное сверхскопление галактик, сверхскопления Гидры-Центавра и Павлина-Индейца, а также Южное сверхскопление образуют сверхскопление галактик, называемое Ланиакея. Оно содержит в себе примерно 100 тысяч галактик. Диаметр Ланиакеи – 500 миллионов световых лет. Для сравнения, диаметр нашей Галактики – всего-то 100 тысяч световых лет. В переводе с гавайского Ланиакея означает «необъятные небеса». Что в целом точно отражает тот факт, что в обозримом будущем долететь до края этих «небес» мы вряд ли сможем.

Ланиакея и соседнее сверхскопление галактик Персея-Рыб

Если в ясную безоблачную ночь поднять голову вверх, то можно увидеть множество звёзд. Так много, что, кажется, и не счесть вовсе. Оказывается, что небесные светила, видимые глазу, всё же посчитаны. Их насчитывается около 6 тыс. Это общее число как для северного, так и для южного полушарий нашей планеты. В идеале мы с вами, находясь, к примеру, в северном полушарии, должны были бы видеть приблизительно половину от их общего числа, а именно где-то 3 тыс. звёзд.

Мириады зимних звёзд

К сожалению, рассмотреть все имеющиеся звёзды практически невозможно, ведь для этого понадобятся условия с идеально прозрачной атмосферой и полное отсутствие любых источников света. Даже если вы окажетесь в чистом поле вдали от городской засветки глубокой зимней ночью. Почему зимой? Да потому, что летние ночи гораздо светлее! Это связано с тем, что солнце недалеко заходит за горизонт. Но даже и в этом случае нашему глазу будет доступно не более 2,5-3 тыс. звёзд. Почему же так?

Всё дело в том, что зрачок человеческого глаза, если его представить в качестве собирает определённое количество света от разных источников. В нашем случае источниками света являются звёзды. Сколько мы их увидим, напрямую зависит от диаметра линзы оптического прибора. Естественно, стекло объектива бинокля или телескопа имеет больший диаметр, чем зрачок глаза. Поэтому и будет собирать больше света. Вследствие этого с помощью астрономических приборов можно увидеть гораздо большее количество звёзд.

Звёздное небо глазами Гиппарха

Конечно, вы замечали, что звёзды отличаются по яркости, или, как говорят астрономы, по видимому блеску. В далёком прошлом люди также обратили на это внимание. Древнегреческий астроном Гиппарх поделил все видимые небесные светила на звёздные величины, имеющие VI классов. Самые яркие из них "заработали" I, а самые невыразительные он охарактеризовал как звёзды VI категории. Остальные были разделены на промежуточные классы.

Впоследствии выяснилось, что разные звёздные величины имеют между собой некую алгоритмическую связь. А искажение яркости в равное количество раз нашим глазом воспринимается как удаление на одинаковое расстояние. Таким образом, стало известно, что сияние звезды I категории ярче сияния II примерно в 2,5 раза.

Во столько же раз звезда II класса ярче III, а небесное светило III, соответственно, - IV. В итоге разница между свечением звёзд I и VI величин отличается в 100 раз. Таким образом, небесные светила VII категории находятся за порогом человеческого зрения. Немаловажно знать, что звёздная величина — это не размер звезды, а её видимый блеск.

Что является абсолютной звёздной величиной?

Звёздные величины бывают не только видимыми, но и абсолютными. Этот термин применяют, когда необходимо сравнить между собой две звезды по их светимости. Чтобы это сделать, каждую звезду относят на условно-стандартное расстояние в 10 парсек. Иными словами, это величина звёздного объекта, которую он имел бы, если находился на расстоянии 10 ПК от наблюдателя.

К примеру, звёздная величина нашего солнца -26,7. А вот с расстояния в 10 ПК наша звезда была бы едва заметным глазу объектом пятой величины. Отсюда следует: чем выше светимость небесного объекта, или, как ещё говорят, энергия, которую звезда излучает в единицу времени, тем больше вероятность, что абсолютная звёздная величина объекта примет отрицательное значение. И наоборот: чем меньше светимость, тем выше будут положительные значения объекта.

Самые яркие звёзды

Все звёзды имеют различный видимый блеск. Одни немного ярче первой величины, вторые - намного слабее. Ввиду этого были введены дробные величины. К примеру, если видимая звёздная величина по своему блеску находится где-то между I и II категорией, то её принято считать звездой 1,5 класса. Также существуют звёзды с величинами 2,3…4,7…и т. д. Например, Процион, входящий в экваториальное созвездие Малого Пса, лучше всего виден по всей России в январе или феврале. Её видимый блеск - 0,4.

Примечательно, что I звёздная величина кратна 0. Только одна звезда практически точно соответствует ей — это Вега, ярчайшее светило в Её блеск составляет примерно 0,03 звёздной величины. Однако есть светила, которые ярче её, но их звёздная величина носит отрицательный характер. Например, Сириус, который можно наблюдать сразу в двух полушариях. Его светимость - -1,5 звёздной величины.

Отрицательные звёздные величины присвоены не только звёздам, но и другим небесным объектам: Солнцу, Луне, некоторым планетам, кометам и космическим станциям. Однако существуют звёзды, которые могут менять свой блеск. Среди них есть множество звёзд пульсирующих, с переменными амплитудами блеска, но встречаются и такие, у которых можно наблюдать несколько пульсаций одновременно.

Измерение звёздных величин

В астрономии практически все расстояния измеряет геометрическая шкала звёздных величин. Фотометрический способ измерений используется для далёких расстояний, а также если нужно сравнить светимость объекта с его видимым блеском. В основном расстояние к ближайшим звёздам определяют по их годичному параллаксу — большой полуоси эллипса. Запущенные в будущем космические спутники увеличат визуальную точность изображений не менее чем в несколько раз. К сожалению, пока для расстояний более чем 50-100 ПК применяют другие методы.

33) Первый закон Кеплера . Все планеты Солнечной системы вращаются вокруг Солнца по эллиптическим орбитам, в одном из фокусов которых находится Солнце.

Второй закон Кеплера Радиус-вектор планеты за одинаковые промежутки времени описывает равные площади: скорость движения планет максимальна в перигелии и минимальна в афелии.

Третий закон Кеплера . Квадраты периодов обращений планет вокруг Солнца соотносятся между собой, как кубы их средних расстояний от Солнца. Т1^2/T2^2=a1^3/a2^3

34) СУТОЧНЫЙ ПАРАЛЛАКС - угол с вершиной в центре небесного светила и со сторонами, направленными к центру Земли и к точке наблюдения на земной поверхности; имеет заметную величину лишь для тел Солнечной системы. Суточный параллакс зависит от зенитного расстояния светила и меняется с суточным периодом.

АСТРОНОМИЧЕСКАЯ ЕДИНИЦА длины (а.е.) - мера расстояний до космич. объектов, равная большой полуоси эллиптической орбиты Земли и, согласно св-вам эллипса, ср. расстоянию Земли от Солнца.

35) Парсе́к (сокращённо пк , pc ) - распространённая в астрономии внесистемная единица измерения расстояния . Название происходит от пар аллакс угловой сек унды и обозначает расстояние до объекта, годичный тригонометрический параллакс которого равен одной угловой секунде. 1 пк=206 265 а. е.=3,0857 1016 м. Звезда, расположенная на расстоянии 1 пк, имеет годичный параллакс, равный 1.

Световой год (св. г. , ly ) - внесистемная единица длины . световой год равен расстоянию, которое свет проходит в вакууме , не испытывая влияния гравитационных полей , за один юлианский год . =0,306601 парсек; 63241,1 а.е.;9460730472580,82 км.

Годичным параллаксом звезды р называют угол, под которым со звезды можно было бы видеть большую полуось земной орбиты (равную 1 а. е.), перпендикулярную направлению на звезду.

Расстояние до звезды. D = a/sin(р)

где а - большая полуось земной орбиты. Заменив синус малого угла величиной самого угла, выраженной в радианной мере, и приняв а = 1 а. е., получим следующую формулу для вычисления расстояния до звезды в астрономических единицах:

36) Блеск звезд :-Глядя на звездное небо, можно заметить, что звезды различны по своей яркости, или, как говорят астрономы, по своему видимому блеску. Наиболее яркие звезды условились называть звездами 1-й звездной величины; те из звезд, которые по своему блеску в 2,5 раза (точнее, в 2,512 раза) слабее звезд 1-й величины, получили наименование звезд 2-й звездной величины. К звездам 3-й звездной величины отнесли те из них. которые слабее звезд 2-й величины в 2,5 раза, и т. д. Самые слабые из звезд, доступных невооруженному глазу, были причислены к звездам 6-й звездной величины. Нужно помнить, что название «звездная величина» указывает не на размеры звезд, а только на их видимый блеск.

Шкала звездных величин

Логарифмическая шкала, используемая для сравнения освещенностей (потоков излучения) от различных объектов или определенных их частей. За основание логарифма принято число 2.512..., десятичны логарифм которого в точности равен 0.4. Единицей ступени служит "1 звездная величина"; обозначается 1 m . Возрастание на 1 m соответствует уменьшению освещенности в 10 0.4 =2.512... раз (подробнее см. звездная величина ). Начало отсчета (нуль-пункт шкалы звездных величин ) устанавливается по специально выбранным звездам, называемым стандартами .

Формула Погсона связывает блеск светил с их звездными величинами: , гдеE 1 и E 2 - освещенность от каждого из светил, m 1 и m 2 - их видимые звездные величины.

37) Абсолютная звездная величина - звездная величина, которую имело бы данное светило с расстояния 10 пк. Определяется светимостью объекта. Болометрическая абсолютная звездная величина Солнца .

Модуль расстояния, разность между видимой (m ) и абсолютной (М ) звёздными величинами небесного светила, применяемая в астрономии для описания расстояний до звёзд и звёздных систем.

Связь абсолютной звездной величины M, видимой звездной величины m и расстояния до звезды R в парсеках:

M = m + 5 – 5 lg R.

38) Телеско́п (от др.-греч. τῆλε - далеко + σκοπέω - смотрю) - прибор, предназначенный для наблюдения небесных светил.

В частности, под телескопом понимается оптическая телескопическая система , применяемая не обязательно для астрономических целей.

Существуют телескопы для всех диапазонов электромагнитного спектра: оптические телескопы, радиотелескопы , рентгеновские телескопы , гамма-телескопы . Кроме того, детекторы нейтрино часто называют нейтринными телескопами. Также, телескопами могут называть детекторы гравитационных волн .

Оптические телескопические системы используют в астрономии (для наблюдения за небесными светилами ), в оптике для различных вспомогательных целей: например, для изменения расходимости лазерного излучения . Также, телескоп может использоваться в качестве зрительной трубы , для решения задач наблюдения за удалёнными объектами . Самые первые чертежи простейшего линзового телескопа были обнаружены в записях Леонардо Да Винчи. Построил телескоп в 1608 Ханс Липперсхей . Также создание телескопа приписывается его современнику Захарию Янсену .

39) Рефрактор - оптический телескоп , в котором для собирания света используется система линз , называемая объективом . Работа таких телескопов обусловлена явлением рефракции (преломления). Телескоп-рефрактор содержит два основных узла: линзовый объектив и окуляр . Объектив создаёт действительное уменьшенное обратное изображение бесконечно удалённого предмета в фокальной плоскости . Это изображение рассматривается в окуляр как в лупу. В силу того, что каждая отдельно взятая линза обладает различными аберрациями (хроматической, сферической и проч.), обычно используются сложные ахроматические и апохроматические объективы. Такие объективы представляют собой выпуклые и вогнутые линзы, составленные и склеенные с тем, чтобы минимизировать аберрации.

Кассегрен

Система Ньютона была изобретена Исааком Ньютоном в 1662 году. Это был первый зеркальный телескоп. В настоящее время эта система в профессиональной практике почти не применяется, но получила большое распространение среди астрономов-любителей. Основной недостаток (в случае крупного инструмента) - большая длина трубы телескопа и неудобное расположение наблюдателя на верхнем конце трубы. Достоинство, благодаря которому система получила распространение среди любителей - простота изготовления зеркал (главное зеркало в случае малых относительных отверстий - сфера; плоское зеркало может быть небольших размеров).

Система Кассегрена (1672 год) свободна от указанных недостатков. При том же фокусном расстоянии, что у телескопа системы Ньютона, труба телескопа будет в 2 раза короче. Это значительно сокращает стоимость, как самого телескопа, так и башни, в которой он установлен. Телескопы системы Кассегрена также распространены среди любителей астрономии.

42) Спектр (лат. spectrum от лат. specter - виде́ние, призрак) - распределение значений физической величины (обычно энергии , частоты или массы ). В 1666 году Исаак Ньютон, обратив внимание на радужную окраску изображений звезд в телескопе, поставил опыт, в результате которого открыл дисперсию света и создал новый прибор – спектроскоп.

Оптическая астрономия занимается электромагнитным излучением с длинами волн от 0.3 до 10 мкм, которые соответствуют оптическому окну прозрачности земной атмосферы. Для выражения длин волн в оптике часто применяется внесистемная единица ангстрем (1 А = 10-10 м). Исторически оптический диапазон - первый (а до XX века - единственный) диапазон, в котором проводились астрономические наблюдения, и человеческий глаз был единственным приемником излучения до середины XIX века (времени появление фотографии и ее применения в астрономии).


Звездная величина

Безразмерная физическая величина, характеризующая , создаваемую небесным объектом вблизи наблюдателя. Субъективно ее значение воспринимается как (у ) или (у ). При этом блеск одного источника указывают путем его сравнения с блеском другого, принятого за эталон. Такими эталонами обычно служат специально подобранные непеременные звезды. Звездную величину сначала ввели как указатель видимого блеска оптических звезд, но позже распространили и на другие диапазоны излучения: , . Шкала звездных величин логарифмическая, как и шкала децибеллов. В шкале звездных величин разность на 5 единиц соответствует 100-кратному различию в потоках света от измеряемого и эталонного источников. Таким образом, разность на 1 звездную величину соответствует отношению потоков света в 100 1/5 = 2.512 раза. Обозначают звездную величину латинской буквой "m" (от лат. magnitudo, величина) в виде верхнего курсивного индекса справа от числа. Направление шкалы звездных величин обратное, т.е. чем больше значение, тем слабее блеск объекта. Например, звезда 2-й звездной величины (2 m ) в 2.512 раза ярче звезды 3-й величины (3 m ) и в 2.512 x 2.512 = 6.310 раза ярче звезды 4-й величины (4 m ).

Видимая звездная величина (m ; часто ее называют просто "звездная величина") указывает поток излучения вблизи наблюдателя, т.е. наблюдаемую яркость небесного источника, которая зависит не только от реальной мощности излучения объекта, но и от расстояния до него. Шкала видимых величин ведет начало от звездного каталога Гиппарха (до 161 ок. 126 до н.э.), в котором все видимые глазом звезды впервые были разбиты на 6 классов по яркости. У звезд Ковша Б.Медведицы блеск около 2 m , у Веги около 0 m . У особо ярких светил значение звездной величины отрицательно: у Сириуса около -1.5 m (т.е. поток света от него в 4 раза больше, чем от Веги), а блеск Венеры в некоторые моменты почти достигает -5 m (т.е. поток света почти в 100 раз больше, чем от Веги). Подчеркнем, что видимая звездная величина может быть измерена как невооруженным глазом, так и с помощью телескопа; как в визуальном диапазоне спектра, так и в других (фотографическом, УФ-, ИК-). В данном случае "видимая" (англ. apparent) означает "наблюдаемая", "кажущаяся" и не имеет отношения конкретно к человеческому глазу (см.: ).

Абсолютная звездная величина (М) указывает, какую видимую звездную величину имело бы светило в том случае, если бы расстояние до него составляло 10 и отсутствовало бы . Таким отразом, абсолютная звездная величина, в отличие от видимой, позволяет сравнивать истинные светимости небесных объектов (в заданном диапазоне спектра).

Что касается спектральных диапазонов, то существует множество систем звездных величин, различающихся выбором конкретного диапазона измерения. При наблюдении глазом (невооруженным или через телескоп) измеряется визуальная звездная величина (m v ). По изображению звезды на обычной фотопластинке, полученному без дополнительных светофильтров, измеряется фотографическая звездная величина (m P). Поскольку фотоэмульсия чувствительна к синим лучам и нечувствительна к красным, на фотопластинке более яркими (чем это кажется глазу) получаются голубые звезды. Однако и с помощью фотопластинки, используя ортохроматическую и желтый , получают так называемую фотовизуальную шкалу звездных величин (m Pv ), которая практически совпадает с визуальной. Сопоставляя яркости источника, измеренные в различных диапазонах спектра, можно узнать его цвет, оценить температуру поверхности (если это звезда) или (если планета), определить степень межзвездного поглощения света и другие важные характеристики. Поэтому разработаны стандартные , в основном определяемых подбором светофильтров. Наиболее популярна трехцветная : ультрафиолетовый (Ultraviolet), синий (Blue) и желтый (Visual). При этом желтый диапазон очень близок к фотовизуальному (B m Pv ), а синий - к фотографическому (B m P).