Нейтрализации метод. «Метод нейтрализации

Химия. Оловянникова Р.Я.

Методические указания к лабораторному занятию № 2

для внеаудиторной работы студентов.

Метод нейтрализации

Метод нейтрализации – это один из видов титриметрического анализа, который широко используется в лабораториях различного медицинского и экологического профиля: клинических, диагностических, санитарно-гигиенических, судебно-экспертных, контроля состояния окружающей среды, стандартизации и контроля лекарственных форм.

В основе метода нейтрализации лежит реакция нейтрализации . Это реакция между кислотой и основанием, один из компонентов которой (или оба) являетсясильным , например,

H 2 SO 4 +2 NaOH → 2H 2 O+Na 2 SO 4 (1)

H + +OH →H 2 O(в кратком ионном виде, отражающем суть процесса)

H 2 C 2 O 4 +2 NaOH → 2H 2 O+Na 2 C 2 O 4 (2)

H 2 C 2 O 4 +2 OH → 2H 2 O+(в кратком ионном виде)

HCl +NH 3 ∙H 2 O→H 2 O+NH 4 Cl(3)

H + + NH 3 → + NH 4 (в кратком ионном виде)

HCl +NaHCO 3 →H 2 CO 3 +NaCl(4)

H + + →H 2 CO 3 (в кратком ионном виде)

NH 4 Cl + NaOH → NH 3 ∙ H 2 O + NaCl (5)

NH 4 + OH →NH 3 ∙H 2 O(в кратком ионном виде)

# При техническом исполнении метода раствор сильного компонента (кислоты или основания) заливается в бюретку и является титрантом.

Из примеров 1 – 5, показанных в молекулярном и кратком ионном виде, можно заметить, что не всегда реакции нейтрализации приводят к образованию воды. Нейтрализация может заключаться и просто в связывании сильной кислоты в слабую (пример 4) или сильного основания в слабое (пример 5).

Примеры 1 – 5 также показывают, что методом нейтрализации можно определять как сильные, так и слабые кислоты и основания, а также соли, которые с точки зрения теории Бренстеда, выполняют роль кислот или оснований.

Таким образом, рабочими растворами в методе нейтрализации являются сильные кислоты или сильные основания, которые используются в качестве титрантов, а также стандартные растворы солей, по которым устанавливают точную концентрацию титрантов.Стандартные растворы – это растворы известной концентрации. Титранты, концентрацию которых установили с помощью стандартных раствором, называюттитрованными растворами .

Титрование – это процесс добавления титранта (титрованного раствора) по каплям до точки эквивалентности (конца реакции).

Точка эквивалентности – это момент реакции, когда вещества прореагировали между собой в эквивалентных количествах. Только в этом случае параметры определяемого вещества (его массу, концентрацию, количество или объем) можно рассчитывать на основе закона эквивалентов. Точку эквивалентности устанавливают с помощью индикаторов кислотно-основного типа.

Индикатор в методе нейтрализации – это слабая кислота или слабое основание органической природы, молекулярная и ионная форма которого отличается по цвету. С позиций протолитической теории Бренстеда, индикатор представляет собой сопряженную кислотно-основную пару, компоненты которой отличаются по цвету:

HInd ⇄ H + +Ind −

цвет I цвет II

Поэтому каждый индикатор характеризуется определенным значением pK a , или так называемым показателем титрования рТ=рК а =−. Вспомним, что рК а – это значение рН среды, при котором содержание кислотной и сопряженной основной формы одинаковы. А это значит, что в точке рТ цвет раствора индикатора будет смешанный. Но глаз человека замечает смешанный цвет и тогда, когда одна из форм индикатора преобладает над другой раз в 10. В этом случае мы получаем зону перехода цвета индикаторарТ ± 1 . При значенияхрН < рТ ± 1 (т.е. левее зоны перехода цвета) индикатор будет находиться главным образом в кислотной своей формеHInd . А при значенияхрН > рТ ± 1 (т.е. правее зоны перехода цвета) будет значительно преобладать его сопряженная основная формаI nd . В таблице 1 представлены примеры индикаторов и их характеристики.

Таблица 1. Индикаторы

Индикатор

рК а (рТ Ind)

рН-диапазонов изменения окраски

в форме кислоты

основания

Тимоловый синий (первое изменение)

Метиловый оранжевый

Бромкрезоловый зеленый

Метиловый красный

Лакмус (азолитмин)

Бромтимоловый синий

Феноловый красный

Тимоловый синий (второе изменение)

Фенолфталеин

Бесцветная

Малиновая

Тимолфталеин

При выборе индикатора руководствуются правилом: значение рН в точке эквивалентности (рН э) должно попадать в зону перехода цвета индикатора (т.е. рН э ∋рТ±1). Значение же рН э определяется по продуктам реакции, когда в колбочке для титрования уже израсходовано исходное вещество, но еще нет избытка титранта (а есть только продукты реакции).

# В методе нейтрализации может быть использовано не только прямое титрование, но и обратное (или титрование по избытку). Его суть: к определяемому веществу добавляется фиксированный избыток стандартного вспомогательного раствора, который затем оттитровывается другим раствором, выполняющим роль титранта. К обратному титрованию прибегают в том случае, когда, например, под рукой нет нужного индикатора для прямого титрования или определяемое вещество слишком летуче.

Применение метода нейтрализации (кислотно-основного титрования) для определения кислотности желудочного сока .

Введение . Желудочный сок в просвете желудка имеет кислую рН: натощак в норме рН~1,5-2 у взрослого человека и рН~3-4 у новорожденных детей. После приема пищи рН еще ниже. Главный неорганический компонент желудочного сока – соляная кислота, которая вырабатывается обкладочными (париентальными) клетками желудка и находится в просвете желудка в свободном и связанном состоянии (главным образом, с белками). Однако, кроме белков в желудочном соке присутствуют и другие слабые кислоты: бикарбонаты, гидросульфаты, дигидро- и гидрофосфаты, сама фосфорная кислота, уксусная, молочная, пировиноградная, масляная, яблочная и некоторые другие. Поэтому различаюттри вида кислотности : общую, свободную (обусловленную концентрацией свободных Н +) и связанную (обусловленную наличием недиссоциированных слабых кислот).

Определение кислотности желудочного сока. В лаборатории кислотность желудочного сока определяют титрованием его титрованным рабочим растворомNaOHв присутствии индикаторов. Результаты выдаются в титриметрических единицах (т.е.).

Одна титриметрическая единица – это объем 0,1э раствораNaOH, который необходимо затратить на титрование 100 мл желудочного сока.

Поскольку на исследование берут не 100 мл желудочного сока, а 5-10 мл, и титруют не 0,1э NaOH, а обычно меньшей его концентрацией (например, 0,089э), то при расчете кислотности желудочного сока в титриметрических единицах необходимо делать две поправки: на объем желудочного сока и на концентрацию идеального (0,1э) раствораNaOH. С учетом этих поправок нетрудно вывести общую формулу для расчета кислотности желудочного сока (в титр.ед.):

где - это параметрыNaOHсогласно определению титриметрической единицы;- объемNaOH, затраченный на титрование взятой на исследование пробы желудочного сока (5 – 10 мл, например);- концентрация титрованного рабочего раствораNaOH.

# Если рабочий раствор NaOHокажется идеальным – С э (NaOH)=0,1моль/л, а объем желудочного сока, взятый на исследованиеV(ж.сока)=5 мл, то формула для расчета кислотности упрощается:

Кислотность ж. сока = , титр. ед.

Указанные формулы применяют для определения любого вида кислотности желудочного сока: свободной кислотности (в присутствии индикатора метилоранжа; он же 4-(4-димеламинофенилазо)бензолсульфонат натрия) илиобщей кислотности (в присутствии фенолфталеина). В этом случаесвязанную кислотность определяют по разности общей и свободной кислотности.

Обоснование выбора индикаторов . Как уже отмечалось, чтобы в желудочном соке определить две фракции кислотности (свободную и связанную), необходимо проводить титрование в присутствии двух индикаторов. Первым индикатором устанавливается точка эквивалентности для 1-й реакции, когда оттитровывается свободная соляная кислота:

    HCl+NaOH=H 2 O+NaCl, или в кратком ионном видеH + +OH − =H 2 O

Если бы титровали не желудочный сок, а водный раствор HCl, то рН э1 =7. В желудочном соке же присутствуют еще и слабые кислоты, которые не должны быть затронуты при титровании в первой реакции. Поэтомуконец титрования для первой реакции (когда вся HCl будет уже оттитрована) диктуется не продуктом реакции, а тем значением рН, которое создается разбавленными растворами слабых кислот (для примера, уксусная кислота дает рН~3,5). Таким образом, рН э1 =3,5 . Индикатор, зона перехода цвета которого включает точку рН э1 3,5 – это метилоранж (4-(4-димеламинофенилазо)бензолсульфонат натрия).

# Отсюда, 1-й этап титрования: титруем порцию желудочного сока пока красная окраска раствора не сменится до оранжевой (сработает метилоранж), и отмечаем объем щелочи, пошедшей на титрование. И если его введем в формулу для расчета кислотности, то получим свободную кислотность желудочного сока в титриметрических единицах.

Вслед за свободной соляной кислотой оттитровываются слабые кислоты (органические и неорганические). Реакция на примере уксусной кислоты:

    СН 3 СООН +NaOH = H 2 O + CH 3 COONa

СН 3 СООН +OH − = H 2 O + CH 3 COO −

рН в точке эквивалентности для второй реакции – это то значение рН, которое обусловлено продуктом реакции - солью, подвергающиеся гидролизу по аниону. Его можно рассчитать, применяя уже рассмотренную формулу (получим рН э2 ~8,7 ). Индикатор, зона перехода цвета которого включает точку рН э2 8,7 – фенолфталеин.

# Отсюда, 2-й этап титрования: продолжаем титровать, пока оранжевая окраска раствора не сменится до ярко малиновой (сработает фенолфталеин). Отмечаем объем щелочи, пошедшей на титрование на втором этапе. И если его введем в формулу для расчета кислотности, то получим связанную кислотность желудочного сока в титриметрических единицах. В этом случае общую кислотность посчитаем как сумму свободной и связанной.

Ситуационные и учебно-познавательные задачи.

    На титрование 15 мл раствора карбоната натрия пошло 13,4 мл 0,15М раствора серной кислоты. Вычислить процентную концентрацию карбоната натрия, если его плотность равна 1,15 г/мл. С каким индикатором надо титровать?

Краткое изложение задачи:

V(Na 2 CO 3) = 15 мл

V(H 2 SO 4) = 13,4 мл

индикатор−?

Решение:

Индикатор выбираем с условием рН э =рТ±1. Поэтому обращаем внимание на продукты реакции:

Na 2 CO 3 + H 2 SO 4 ⇄ Н 2 CO 3 + Na 2 SO 4 рН э <7

Соль Na 2 SO 4 не подвергается гидролизу, и кислотность среды в точке эквивалентности обусловлена только угольной кислотой:

=

Найденное значение рН э 3,8 попадает в зону перехода цвета индикатора метилового оранжевого (см.табл.1).

Ответ: ; индикатор – метиловый оранжевый.


    Рабочие растворы, применяемые в методе нейтрализации в качестве титранта

    1. слабые основания NH 3 ∙H 2 O

      слабые кислоты CH 3 COOH, H 2 CO 3

      сильные основания NaOH, KOH

    Для установки титра кислот применяется

    1. Na 2 CO 3 , Na 2 B 4 O 7 ∙10H 2 O

      H 2 C 2 O 4 ∙2H 2 O

    Для установки титра щелочей применяется

    1. Na 2 CO 3 , Na 2 B 4 O 7 ∙10H 2 O

      H 2 C 2 O 4 ∙2H 2 O

    Титруют KOHсоляной кислотой. Значение рН в точке эквивалентности и, соответственно, применяемый индикатор будут

    1. 7 – лакмус, бромтимоловый синий

      7 – тимоловый синий

      <7– лакмус, метиловый красный, метилоранж

    Титруют водный раствор аммиака соляной кислотой. Значение рН в точке эквивалентности и, соответственно, применяемый индикатор будут

    1. >7 – тимолфталеин, фенолфталеин

      7 – тимолфталеин, фенолфталеин

      <7 – метилоранж, метиловый красный

      >7 – метилоранж, метиловый красный

    Титруют борную кислоту H 3 BO 3 растворомKOH. Значение рН в точке эквивалентности и, соответственно, применяемый индикатор будут

    1. 7 – лакмус, феноловый красный

      >7 – тимолфталеин, фенолфталеин

      >7– метилоранж, метиловый красный

      <7– метилоранж, метиловый красный

    Для определения азотистой кислоты методом нейтрализации можно использовать рабочий реактив

    1. щавелевую кислоту

      гидроксид натрия

      водный аммиак

      серную кислоту

    На титрование 2 мл раствора азотистой кислоты пошло 4 мл раствора титранта с эквивалентной концентрацией 0,03 моль/л. Эквивалентная концентрация азотистой кислоты и её титр при этом оказались равными

    1. 0,06 моль/л; 2,82∙10 -3 г/мл

      0,06 г/мл; 2,82∙10 -3 моль/л

      0,15 моль/л; 1,41∙10 -3 г/мл

      0,06 моль/л; 2,82∙10 -3 г/л

    25 мл образца бытового моющего раствора аммиака разбавили водой точно до 250 мл в мерной колбе. На титрование 5 мл разбавленного раствора потребовалось 4 мл 0,025М раствора HCl. Полагая, что щелочность образца определяется только аммиаком, рассчитали массу аммиака на 1 л раствора и получили значение

    1. 85∙10 -3 г/л

      1,7∙10 -3 г/л

      3,4∙10 -3 г/л

      34∙10 -3 г/л

    В Реакции NH 3 +H 2 PO 4 - →NH 4 + +HPO 4 2- дигидрофосфат ведёт себя как

    1. кислота

      основание

      окислитель

      восстановитель

    Индикаторы в методе нейтрализации – это

    1. комплексообразователи

      слабые органические кислоты или основания

      сами рабочие растворы в роли индукторов

      эриохром черный

    Для определения точки эквивалентности в методе нейтрализации используют

    1. реакции с образованием осадка

      растворы, меняющие свою окраску в точке эквивалентности

      кислотно-основные индикаторы

    Для выбора индикатора в методе нейтрализации необходимо знать

    1. концентрацию индикатора и его рТ

      концентрацию титранта и рН среды

      рН среды в точке эквивалентности

      ПР осадка и рН среды

    Индикатором для уточнения концентрации NАОН по щавелевой кислоте является

    1. эриохром

    2. фенолфталеин

    Активная кислотность в 0,1 м растворе НС1 (в единицах рН) равна

  1. При определении свободной (активной) кислотности желудочного сока методом нейтрализации используют индикатор

    1. фенолфталеин

    2. метилоранж

      фенолрот (феноловый красный)

      метилрот

  2. При определении связанной кислотности желудочного сока методом нейтрализации используют индикатор

    1. фенолфталеин

    2. метилоранж

      фенолрот (феноловый красный)

      метилрот

    При титровании желудочного сока рабочим раствором NaOHпервая точка эквивалентности соответствует значению рН

  3. При титровании желудочного сока рабочим раствором NaOHдо первой точки эквивалентности оттитровывается

    1. общая кислотность

      свободная кислотность (фактически HCl)

      связанная кислотность

      молочная кислота

  4. При титровании желудочного сока рабочим раствором NaOHвторая точка эквивалентности соответствует значению рН

  5. При титровании желудочного сока рабочим раствором NaOHот первой до второй точки эквивалентности оттитровывается

    1. общая кислотность

      свободная кислотность (фактически HCl)

      связанная кислотность

      только уксусная кислота

  6. Если титровать желудочный сок рабочим раствором NaOHв присутствии только одного индикатора – фенолфталеина, то можно определить

    1. общую кислотность

      связанную кислотность

      только соляную кислоту

      только уксусную кислоту

    Если титровать желудочный сок рабочим раствором NaOHв присутствии только одного индикатора – метилоранжа, то можно определить

    1. общую кислотность

      связанную кислотность

      только соляную кислоту

      только уксусную кислоту

    У взрослого здорового человека свободная кислотность желудочного сока составляет (в т.е.)

    1. 20 – 40

    У взрослого здорового человека общая кислотность желудочного сока составляет (в т.е.)

    1. 40 – 60

    На титрование 5 мл отфильтрованного желудочного сока в присутствии фенолфталеина потребовалось 2,8 мл 0,095 э раствора NaOH. Общая кислотность желудочного сока равна (в т.е.)

  7. На титрование 10 мл желудочного сока с метиловым желтым (диметиламиноазобензолом) израсходовано 3,1 мл 0,098 э раствора NaOH, а с фенолфталеином – 6,0 млNaOH. Содержание соляной кислоты и общая кислотность составили (в т.е.)

    1. 30,4 и 58,8


Аналитическая Химия и физико.хим методы.

1. Вопрос: (9). Сущность метода нейтрализации, применение его в анализе качества товаров. Понятие о кривых титрования. Правило выбора индикатора.
Ответ: Метод нейтрализации - титриметрический метод определения концентрации кислот (ацидиметрия) и щелочей (алкалиметрия) в растворах.
В основе метода нейтрализации лежит использование реакции нейтрализации, т. е. соединения водородных и гидроксильных ионов с образованием малодиссоциирующего вещества - воды. Соответственно кислоты определяют щелочами, щелочи - кислотами.
В основе метода лежит реакция нейтрализации:
H+ + ОН- Точнее H3O+ + OH- Методами кислотно-основного титрования определяют концентрацию сильных и слабых кислот или оснований, а также солей. Объектами анализа являются неорганические оксиды, основания и кислоты. Анализируют карбонаты, фосфаты, пирофосфаты, цианиды и т.д.
Процесс нейтрализации можно представить графически в виде кривой титрования, изображающей
изменение рН титруемого раствора по мере добавления к нему стандартного раствора кислоты или ще-
лочи. На основании кривых титрования проводят выбор индикатора, что является самым важным в ме-
тоде нейтрализации.
Момент эквивалентности устанавливают индикаторным методом по изменению окраски индикато-
ра, 1-2 капли которого добавляют в титруемый раствор.
Резкое изменение рН вблизи ТЭ называется скачком титрования.
Правила выбора индикатора:
1 Интервал перехода индикатора должен совпадать со скачком титрования или хотя бы частично
касаться точки эквивалентности.
2 Индикатора надо добавлять мало, так как, являясь протолитом, он взаимодействует с определяемым веществом или титрантом.
3 Практически всегда имеет место ошибка, связанная с несовпадением точки эквивалентности с
конечной точкой титрования.
4 Индикаторная ошибка титрования должна быть незначительной.
5 Чем меньше скачок титрования, тем труднее выбрать индикатор

2.Вопрос: (20). Сущность метода обратного титрования на примере иодометрии. Напишите уравнения реакций, приведите принцип расчетов по результатам анализа.
Ответ: В основе метода иодометрии лежит реакция: 2I + Ox >I2+ Red
I- –ион – сильный восстановитель, однако растворы KI в качестве титрантов не применяются, так
как они неустойчивы и окисляются на воздухе, поэтому обычно к анализируемому раствору окислителя добавляют избыток KI . I2 , выделяющийся в количестве, эквивалентном количеству вступившего в реакцию окислителя, оттитровывают стандартным раствором тиосульфата натрия.
I2 + 2Na2S2O3 > 2NaI + Na2S4O6
Титрант – стандартный раствор Na2S2O3 (0,1 н; 0,05 н; 0,02 н). Готовить по точной навеске нельзя, так как...
**************************************************************

КЫРГЫЗСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ им. Ж. БАЛАСАГЫНА

ФАКУЛЬТЕТ ХИМИИ И ХИМИЧЕСКОЙ ТЕХНОЛОГИ

Кафедра ЮНЕСКО по экологическому образованию и естественным наукам

РЕФЕРАТ

по дисциплине : Аналитическая химия

на тему :

МЕТОД НЕЙТРАЛИЗАЦИИ В ТИТРИМЕТРИЧЕСКОМ МЕТОДЕ АНАЛИЗА

Студентки II курса гр. хт-1-08

ФИО: Байтанаевой А.

Преподаватель: доцент Ли С.П.

Бишкек-2010г.

Введение

Аналитическая химия. Методы определения

Титриметрический метод анализа

Приготовление титрованного раствора

Титрование. Индикаторы

Методы установления точек эквивалентности. Классификация методов титриметрического анализа

Посуды, применяемые для титрования

Вычисления в объемном анализе

Методы кислотно-основного титрования, или методы нейтрализации

Заключение

Использованная литература

Введение

Аналитическая химия является фундаментальной химической наукой, занимающей видное место в ряду других химических дисциплин. Вместе с тем аналитическая химия теснейшим образом связана с повседневной практикой, поскольку без данных анализа о содержании в сырье или конечном продукте основных компонентов и примесей невозможно грамотное проведение технологического процесса в металлургической, химической, фармацевтической и многих других отраслях промышленности.

Данные химического анализа требуются при решении экономических и других важных вопросов.

Современное развитие аналитической химии, обусловленное в значительной мере прогрессом различных отраслей производства.

Аналитическая химия. Методы определения

аналитический химия титриметрический нейтрализация

Аналитическая химия- это наука об определении химического состава веществ и отчасти их химической структуры. Методы, которые создает аналитическая химия, позволяют отвечать на вопросы о том, из чего состоит вещество, какие компоненты входят в его состав. Аналитические методы часто дают возможность узнавать, в какой форме данный компонент присутствует в веществе, например, каково состояние окисления элемента.

Методы определения можно классифицировать, основываясь на свойстве вещества, которое положено в основу определения. Если измеряется масса осадка, метод называется гравиметрическим, если определяется интенсивность окраски раствора, - фотометрическим, а если величина ЭДС,- потенциометрическим.

Методы определения часто делят на химические (классические), физико-химические (инструментальные) и физические .

Химическими в аналитической химии принято называть главным образом гравиметрические и титриметрические методы. Эти методы наиболее старые, но широко распространенные до настоящего времени, играющие важную роль в практике химического анализа.

Гравиметрический (весовой) анализ - измерение массы определяемого вещества или его составных частей, выделяемых в химически чистом состоянии или в виде соответствующих соединений.

Титриметрический (объемный) анализ - измерение объема израсходованного на реакцию реактива точно известной концентрации.

Физико-химические и физические методы анализа обычно делят на следующие группы:

1) электрохимические

2) спектральные (оптические)

) хроматографические

) радиометрические

) масс-спектрометрические

Титриметрический метод анализа

Титриметрическим методом анализа называют метод количественного анализа, основанный на измерении количества реагента, требующегося для завершения реакции с данным количеством определяемого вещества.

Метод заключается в том, что к раствору определяемого вещества постепенно прибавляют раствор реактива известной концентрации. Добавление реактива продолжают до тех пор, пока его количество не станет эквивалентным количеству реагирующего с ним определяемого вещества.

Количественные определения с помощью объемного метода выполняются очень быстро. Время, требуемое для завершения определения титриметрическим методом, измеряется минутами. Это позволяет без особой затраты труда проводить несколько последовательных и параллельных определений.

Основоположником титриметрического анализа является французский ученый Ж.Л.Гей-Люссак.

Химический элемент, простое или сложное вещество, содержание которого определяют в данном образце анализируемого продукта, называют определяемым веществом .

К определяемым веществам относят также атомы, ионы, связанные свободные радикалы и функциональные группы.

Твердое, жидкое или газообразное вещество, вступающее в реакцию с определенным веществом, называют реагентом .

Титрование - это приливание одного раствора к другому при непрерывном смешивании. Концентрация одного раствора точна известна.

Титрант (стандартный или титрованный раствор) - это раствор с точно известной концентрацией.

Нормальность раствора N - количество грамм-эквивалента вещества, содержащегося в 1л раствора.

N 1 V 1 =N 2 V 2

Титр (Т) - точная концентрация стандартного раствора (титранта).

Выражают числом граммов растворенного вещества, содержащегося в 1мл раствора, г/мл.

В аналитической химии титр - один из способов выражения концентрации раствора.

N- нормальность раствора, г-экв/л

Э- эквивалент растворенного вещества

Т- титр, г/см 3 (мл).

Химические элементы или их соединения вступают в химические реакции друг с другом в строго определенных весовых количествах, соответствующих их химическим эквивалентам (грамм-эквивалентам).

Другими словами, грамм-эквивалент одного вещества реагирует с одним грамм-эквивалентом другого вещества.

Приготовление титрованного раствора по точной навеске исходного вещества

Первым способом приготовления раствора точно известной концентрации, т.е. характеризующегося определенным титром, является растворение точной навески исходного химически чистого вещества в воде или другом растворителе и разбавление полученного раствора до требуемого объема. Зная массу растворенного в воде химически чистого соединения и объем полученного раствора, легко вычислить титр (Т) приготовленного реактива, в г/мл:

Этим способом готовят титрованные растворы таких веществ, которые можно легко получить в чистом виде и состав которых отвечает точно определенной формуле и не изменяется в процессе хранения. Взвешивание вещества проводят в бюксе. Таким путем нельзя приготовить титрованные растворы веществ, которые отличаются большой гигроскопичностью, легко теряют кристаллизационную воду, подвергаются действию двуокиси углерода воздуха и т.д.

Приготовление титрованных растворов по "фиксаналу"

Очень часто на практике для приготовления титрованных растворов используют приготовленные на химических заводах или в специальных лабораториях точно отвешенные количества твердых химически чистых соединений или точно отмеренные объемы их растворов определенной нормальности.

Для приготовления требуемого титрованного раствора ампулу разбивают над специальной воронкой, снабженной пробивным устройством, содержимое ее количественно переводят в мерную колбу и доводят объем водой до метки.

Обычно в ампулах содержится 0,1г-экв вещества, т.е. столько, сколько требуется для приготовления 1л 0,1н. раствора.

Титрование

Титрование проводят следующим образом. Бюретку заполняют рабочим раствором до нулевого деления так, чтобы в нижнем конце ее не было пузырьков воздуха. Исследуемый раствор отмеряют пипеткой и переносят в коническую колбу. Сюда же вливают несколько капель раствора индикатора, за исключением тех случаев, когда один из взятых растворов является индикатором. К раствору в колбе постепенно приливают раствор из бюретки до изменения окраски раствора в колбе. Сначала раствор из бюретки приливают тонкой струей, непрерывно перемешивая титруемый раствор вращением колбы. По мере титрования рабочий раствор приливают все медленнее и к концу титрования его добавляют уже по каплям.

Необходимо во время титрования левой рукой управлять зажимом бюретки, а правой одновременно вращать колбу с титруемой жидкостью, перемешивая, таким образом, титруемый раствор.

Результаты титрования будут правильными, если в конце титрования окраска титруемого раствора резко изменится от одной капли рабочего раствора. Чтобы переход окраски раствора был лучше заметен, колбу с титруемым раствором во время титрования помещают на белую подставку.

После каждого титрования отсчитывают по шкале бюретки объем затраченного рабочего раствора и результат отсчета записывают в лабораторный журнал. Каждый раствор титруют не менее трех раз, результаты титрования не должны отличаться друг от друга более чем на 0,1 мл. Концентрацию раствора вычисляют по среднему значению.

Индикаторы

Индикаторами называются вещества, при помощи которых устанавливают момент эквивалентности между титруемыми растворами. В качестве индикаторов чаще всего применяют вещества, способные давать с одним из реагирующих веществ легко заметную цветную реакцию. Например, крахмал, взаимодействуя с раствором йода, окрашивается в интенсивно синий цвет. Следовательно, крахмал- индикатор на свободный йод. Один и тот же индикатор в различных условиях часто приобретает различную окраску. Например, фенолфталеин в кислой и нейтральной среде бесцветен, а в щелочной среде принимает красно-фиолетовую окраску.

Иногда индикатором служит непосредственно одно из реагирующих веществ. Например, раствор окислителя KMnO 4 в кислой среде при постепенном прибавлении восстановителя к нему обесцвечивается. Как только в растворе появится избыточная капля KMnO 4 , раствор окрасится в бледно-розовый цвет.

Методы установления точек эквивалентности

Установление конечной точки титрования или точки эквивалентности представляет собой важнейшую операцию титриметрического метода анализа, так как от точности определения точки эквивалентности зависит точность результатов анализа. Обычно конец титрования устанавливают по изменению окраски титруемого раствора или индикатора, вводимого в начале или в процессе титрования. Применят также и безиндикаторные методы, основанные на использовании специальных приборов, позволяющих судить об изменениях, которые происходят в титруемом растворе в процессе титрования. Такие методы называют физико-химическими или инструментальными методами определения точек эквивалентности. Они основаны на измерении электропроводности, значений потенциалов, оптической плотности и других физико-химических параметров титруемых растворов, которые резко изменяются в точке эквивалентности.

Точку эквивалентности можно определить следующими методами:

)визуально - по изменению цвета раствора, если определяемое вещество или реагент окрашены; так как в точке эквивалентности концентрация определяемого вещества уменьшается до минимума, а концентрация реагента начинает повышаться.

) визуально - по появлению помутнения или по изменению окраски раствора, вызываемой образованием продуктов реакции, или индикатора, если они бесцветны.

) физико-химическими методами с последующим анализом кривых титрования, отражающих происходящие в процессе титрования изменения физико-химических параметров титруемых растворов независимо от окраски. Точку эквивалентности устанавливают по пересечению кривых или по скачку кривой титрования.

Классификация титрования

)Метод нейтрализации основан на использовании реакций нейтрализации кислот, оснований, солей слабых кислот или слабых оснований, сильно гидролизирующихся в водных растворах, разнообразных неорганических и органических соединений, проявляющих в неводных растворах кислые или основные свойства, и др.

)Метод окисления-восстановления основан на использовании реакций окисления-восстановления элементов, способных переходить из низших степеней окисления в высшие, и наоборот, а также ионов и молекул, которые реагируют с окислителями или восстановителями, не подвергаясь непосредственному окислению или восстановлению.

)Метод осаждения основан на использовании реакций осаждения.

)Метод комплексообразования основан на использовании реакций комплексообразования, из которых наиболее широко применяют реакции ионов металлов с так называемыми комплексонами.

Посуды, применяемые для титрования

Мерные колбы служат для измерения объемов растворов, приготовления растворов определенной концентрации. Объем жидкости, вмещаемой колбой, выражают в миллилитрах. На колбе указывают ее емкость и температуру(20 0 С), при которой эта емкость измерена.

Мерные колбы бывают различной емкости: от 25 до 2000 мл.

Пипетки служат для отмеривания небольших объемов растворов и перенесения определенного объема раствора из одного сосуда в другой. Объем жидкости, вмещаемой пипеткой, выражают в миллилитрах. На расширенной части пипетки указывают ее емкость и температуру (обычно 20 0 С), при которой эта емкость измерена.

Пипетки бывают различной емкости: от 1 до 100мл.

Измерительные пипетки небольшой емкости не имеют расширения и градуированы на 0,1-1мл.


Бюретки представляют собой узкие, градуированные по длине цилиндрические стеклянные трубки. Один конец бюретки сужен и снабжен стеклянным краном или резиновой трубкой, соединенной с капилляром, через который из бюретки выливается раствор. Резиновая трубка зажимается снаружи металлическим зажимом. При надавливании на зажим указательным и большим пальцами, из бюретки выливается жидкость.

Хорошо вымытую бюретку 2-3 раза ополаскивают дистиллированной водой, а затем раствором, которым ее будут наполнять. В капилляре крана не должно оставаться пузырьков воздуха. При отсчетах делений глаз наблюдателя должен находиться на уровне мениска. Объем светлых жидкостей отсчитывают по нижнему мениску, темных, например, KMnO 4 , I 2 ,- по верхнему.

Коническая колба

Мерные цилиндры

Вычисление в объемном анализе

Грамм-эквивалент

Грамм-эквивалентом называется количество граммов вещества, эквивалентное (химически равноценное) грамм-атому или грамм-иону водорода в данной реакции. Из этого определения следует, что грамм-эквивалент одного и того же вещества в разных реакциях может быть различный. Например, Na 2 CO 3 с кислотой может реагировать двояко:

Na 2 CO 3 +HCI= NaНСО 3 +NaCI (1) 2 CO 3 +2HCI= NaCI +Н 2 СО 3 (2)

В реакции (1) одна грамм-молекула Na 2 CO 3 реагирует с одной грамм-молекулой HCI, что соответствует одному грамм-атому водорода. В этой реакции грамм-эквивалент Na 2 CO 3 равен молю М(Na 2 CO 3), что выражается равенством Э(Na 2 CO 3)= М(Na 2 CO 3). В реакции (2) одна грамм-молекула Na 2 CO 3 реагирует с двумя молями HCI. Следовательно,

Э(Na 2 CO 3)= =53 г.

Нормальные и молярные растворы

Нормальность раствора N - количество грамм-эквивалента вещества, содержащегося в 1л раствора.

Молярность раствора указывает, сколько молей растворенного вещества содержится в 1л раствора.

Зная концентрацию раствора, выраженную в граммах на определенный объем, можно вычислить нормальность и молярность его:

Пример : В 250 мл раствора гидроокиси кальция содержится 3,705 г Са (ОН) 2 . Вычислить нормальность и молярность раствора.

Решение : Сначала вычислим, сколько граммов Са (ОН) 2 содержится в 1л раствора:

3,705г Са (ОН) 2 - 250 мл Х=14,82 г/л

Х г Са (ОН) 2 - 1000 мл

Найдем грамм-молекулу и грамм-эквивалент:

М(Са (ОН) 2)=74,10 г. Э(Са (ОН) 2)=37,05г.

Нормальность раствора:

05г/л - 1н. Х=0,4н.

14,82г/л - Х н.

Молярность раствора:

10г/л - 1моль Х=0,2М

82г/л - Х моль

Зная нормальность или молярность раствора, можно вычислить его титр.

Пример : Вычислить титр 0,1н. раствора H 2 SO 4 по NaOH.

Решение :

ТH 2 SO 4 / NaOH =г/мл

В объемном анализе применяют несколько методов вычисления.

) Вычисление нормальности анализируемого раствора по нормальности рабочего раствора . При взаимодействии двух веществ NaOH грамм-эквивалент одного вещества реагирует с грамм-эквивалентом другого. Растворы различных веществ одной и той же нормальности содержат в равных объемах одинаковое число грамм-эквивалентов растворенного вещества. Следовательно, одинаковые объемы таких растворов содержат эквивалентные количества вещества. Поэтому, например, для нейтрализации 10 мл 1н. HCI требуется затратить ровно 10 мл 1н. раствора NaOH.

Растворы одинаковой нормальности вступают в реакцию в равных объемах.

Зная нормальность одного из двух реагирующих растворов и их объемы, расходуемые на титрование друг друга, легко определить неизвестную нормальность второго раствора. Обозначим нормальность первого раствора через N 2 и его объем через V 2 . Тогда на основании сказанного можно составить равенство:

V 1 N 1 =V 2 N 2

Пример. Определить нормальность раствора соляной кислоты, если известно, что для нейтрализации 30,00 мл ее потребовалось 28,00 мл 0,1100 н. раствора NaOH.

Решение .

HCI V HCI =N NaOH V NaOH

N HCI = =.

) Вычисление количества определяемого вещества по титру рабочего раствора, выраженному в граммах определяемого вещества. Титр рабочего раствора в граммах определяемого вещества равен числу граммов определяемого вещества, которое эквивалентно количеству вещества, содержащегося в 1 мл рабочего раствора. Зная титр рабочего раствора по определяемому веществу T= и объем рабочего раствора, израсходованного на титрование, можно вычислить число граммов (массу) определяемого вещества.

Пример. Вычислить процентное содержание Na 2 CO 3 в образце, если для титрования навески 0, 100 гр. израсходовано 15,00 мл 0,1н. HCI.

Решение .

М (Na 2 CO 3) =106,00 гр. Э(Na 2 CO 3) =53,00 гр.

Т(HCI/ Na 2 CO 3)= =г/мл(Na 2 CO 3) = Т(HCI/ Na 2 CO 3) V HCI =0,0053*15,00=0,0795 г.

Процентное содержание Na 2 CO 3 равно

3) Вычисление числа миллиграмм-эквивалентов исследуемого вещества. Помножив нормальность рабочего раствора на объем его, израсходованный на титрование исследуемого вещества, получим число миллиграмм-эквивалентов растворенного вещества в оттитрованной части исследуемого вещества. Масса определяемого вещества равна:

(гр.)

Статистическая обработка результатов анализа

При анализе веществ (проб) обычно проводят несколько параллельных определений. При этом отдельные результаты определений должны быть близкими по величине и соответствовать истинному содержанию компонентов (элементов) в исследуемом веществе (пробе).

Существуют два фактора, по которым аналитик судит о полученных результатах анализа

1) Воспроизводимость полученных результатов.

2) Соответствие их составу вещества (пробы)

Воспроизводимость результатов анализа зависит от случайных ошибок анализа. Чем больше случайная ошибка, тем больше разброс значений при повторении анализа. Случайная ошибка может иметь размерность измеряемых величин (мг, мг/л) или же может быть выражена в процентах. Следовательно, воспроизводимость определяет вероятность того, что результаты последующих измерений окажутся в некотором заданном интервале, в центре которого находится среднее значение всех определений, выполненных данным методом.

В отличие от случайных ошибок, систематические ошибки влияют на все измерения всегда в одинаковой степени.

Цель всех аналитических определений и исследований сводится к нахождению результатов, наиболее близких к истинному составу или к истинному содержанию компонентов пробы.

Для оценки точности или надежности результатов аналитических определений пользуются статистической обработкой результатов и вычисляют следующие величины:

1) Среднее арифметическое

) Дисперсию

Среднюю квадратичную ошибку

S =

3) Среднюю квадратичную ошибку среднего арифметического

a=0, 95; R=2

4)
Доверительный интервал

Методы кислотно-основного титрования, или методы нейтрализации

Методы нейтрализации основаны на применении реакций нейтрализации. Основным уравнением процесса нейтрализации в водных растворах является взаимодействие ионов гидроксония (или водорода) с ионами гидроксила, сопровождающееся образованием слабодиссоциированных молекул воды:

H 3 O + +OH - →2H 2 O или

H + +OH - →H 2 O

Методы нейтрализации позволяют количественно определять кислоты (с помощью титрованных растворов щелочей), основания (с помощью титрованных растворов кислот) и другие вещества, реагирующие в стехиометрических соотношениях с кислотами и основаниями в водных растворах.

Техника определения состоит в том, что к определенному количеству раствора основания (или кислоты) постепенно приливают из бюретки титрованный раствор кислоты (или основания) до наступления точки эквивалентности. Количество основания (или кислоты), содержащееся в исследуемом растворе, вычисляют по объему титрованного раствора кислоты (или основания), израсходованного на нейтрализацию определенного объема раствора анализируемого образца или навески исследуемого продукта.

Кислотность или щелочность раствора определяют c помощью индикаторов. Для проявления окраски достаточно добавить в исследуемый раствор всего лишь 1-2 капли 0,1% раствора индикатора. Цвета различных индикаторов в растворах кислот и щелочей приведены в таблице.

Таблица 1.Окраска индикаторов в растворах щелочей и кислот.


Рассмотрим конкретный пример. Пусть имеется раствор NaOH неизвестной концентрации. 10,0 мл этого раствора поместили в колбу и добавили 1 каплю слабого раствора фенолфталеина. Раствор окрасился в малиновый цвет (рис.1а).


Титрование сильной кислоты сильным основанием

А) Приготовление 0,1 н. раствора HCI

Для приготовления 0,1н. раствора HCI берут кислоту меньшей концентрации, примерно 20%-ную. Определяют плотность ее ареометром (она равна 1,140), для этого кислоту наливают в высокий стеклянный цилиндр, диаметр которого превышает диаметра шарика ареометра. Осторожно опускают ареометр в жидкость и следят за тем, чтобы он свободно плавал, не касаясь стенок цилиндра. Отсчет ведут по шкале ареометра. Деление шкалы, совпадающее с уровнем жидкости, показывает плотность раствора. Затем узнают процентную концентрацию (по справочнику) и рассчитывают, сколько этой кислоты следует брать, чтобы получить 500 мл 0,1н. раствора HCI.

C (HCI) =28, 18%

Расчет навески на объем мерной колбы (250мл.)

m = = 36, 5 * 0, 1 * 0, 25=0, 92 гр.HCI.

гр. исходной кислоты содержится --- 28,18 гр. х.ч. HCI.

Х гр. --- 0,92 гр. HCI.

Х = 3,2 гр. х.ч. HCI.

Чтобы не отвешивать соляную кислоту, а отмерить мензуркой, вычислим объем 28,18%-ной кислоты, необходимый для приготовления раствора. Для этого массу 28,18%-ной кислоты делим на плотность:

V = = =2, 8 мл. HCI

Затем отмеряют 2,8 мл кислоты, переносят в мерную колбу на 500 мл и доводят объем раствора до метки, и, закрыв колбу пробкой, перемешивают. Получив примерно 0,1 н. раствор HCI, устанавливают титр и нормальную концентрацию его по раствору тетрабората натрия.

Б) Приготовление 0,1н. раствора тетрабората натрия (буры)

Для определения титра раствора HCI берут кристаллогидрат тетрабората натрия. Это соль удовлетворяет почти всем требованиям, предъявляемым к исходным веществам, но относительно мало растворяется в холодной воде. Для установки титра HCI или серной кислоты используют перекристаллизованный продукт.

При растворении тетрабората натрия в воде протекает реакция гидролиза:

В 4 О 7 2- + 5H 2 O D 2H 2 BO 3 - + 2H 3 BO 3

H 2 BO 3 ионы, в свою очередь, подвергаются гидролизу:

H 2 BO 3 - +H 2 OD OH - + H 3 BO 3

Ионы оттитровываются кислотой, и гидролиз идет до конца. Суммарно реакцию титрования можно выразить уравнением:

В 4 О 7 2- +2H + +5 H 2 OD 4H 3 BO 3

Э (Na 2 B 4 O 7 10H 2 O) =190, 6

1000мл (H 2 O) --- 190, 6 гр. (Na 2 B 4 O 7 10H 2 O) Х=95, 3гр. (Na 2 B 4 O 7 10H 2 O)

500 мл (H 2 O) --- Х гр. (Na 2 B 4 O 7 10H 2 O)

95, 3 гр. --- 1н. Х=9, 5гр. (Na 2 B 4 O 7 10 H 2 O )

Х гр. --- 0,1н.

Для растворения тетрабората натрия наливают в колбу примерно ½ объема колбы дистиллированной воды, нагревают на водяной бане, перемешивая содержимое колбы вращательным движением до полного растворения соли. После растворения колбу с тетраборатом натрия охлаждают до комнатной температуры и доводят до метки дистиллированной водой, сначала небольшими, а затем по каплям, применяя капиллярную пипетку. Закрыв колбу пробкой, тщательно перемешивают.

При расчете титра и нормальной концентрации раствора тетрабората натрия используют формулы:

Т(Na 2 B 4 O 7 10H 2 O)= (г/мл)

N (Na 2 B 4 O 7 10H 2 O) = (г-экв/л)

В) Определение титра раствора HCI по тетраборату натрия методом пипетирования .

Берут чистую пипетку на 10 мл, ополаскивают раствором тетрабората натрия (из мерной колбы). Наполняют пипетку раствором до метки и переносят для титрования в другую колбу, добавляют 2-3 капли индикатора метилового оранжевого. Бюретку перед титрованием промывают два раза небольшим количеством HCI и затем наполняют ее, доводя мениск до нулевой черты. Проверив, нет ли в капиллярной трубке ("носике") пузырьков воздуха, начинают титровать до появления бледно-красного цвета. Титрование повторяют 3 раза и вычисляют среднюю величину.

титрование15,0 мл HCI

2 титрование 14,8 мл HCI V СР =14,76 мл

3 титрование 14,5 мл HCI

После титрования проводят вычисление нормальной концентрации раствора HCI. Нормальность кислоты вычисляют по среднему значению из трех определений. Расчет ведут по формуле:

N СОЛИ V СОЛИ= N КИСЛ V КИСЛ

N HCI =

N HCI == 0, 06775 (г-экв/л)

Г) Приготовление титрованного раствора гидроксида натрия

Реактивы гидроксида натрия нередко содержат примеси карбоната натрия, и поэтому для точных работ раствор щелочи должен быть химически чистым.

При определении титра раствора гидроксида натрия по хлороводородной кислоте берут мерную колбу на 100 мл. Неизвестной количестве NaOH приливают дистиллированную воду до метки, закрывают пробкой и перемешивают. Затем пипеткой на 10 мл берут раствор щелочи из мерной колбы и переносят в колбу для титрования, прибавляют 2-3 капли Фенолфталеина и титруют хлороводородной кислотой до обесцвечивания. Титрование повторяют 3 раза и рассчитывают среднюю величину.

Е титрование- 1,8 мл

2-е титрование- 1,7 мл V СР = 1,7 мл

3-е титрование- 1,6 мл

Т HCI / NaOH = = = 0,00271 г/мл

m NaOH =

1) m NaOH ==0,04878 гр.

) m NaOH = 0,00271*1,7*10=0,04606 гр.

) m NaOH = 0,00271*1,6*10=0,04336 гр.

Статистическая обработка результатов анализа

(X i - ) 10 - 3 (X i - ) 10 - 6 Условия

0,000001


) S 2 = = =4*10 -6

3) S = ==2*10 -3

) = ==1, 1*10 -3

6) åa=ta, R S= 4,303*1, 1*10 -3 =4*10 -3

7) a= ±åa=(0,04606±4*10 - 3)

Определение гидроксида натрия и карбоната натрия при совместном их присутствии

Гидроксиды натрия и калия из воздуха поглощают СО 2 и превращаются в карбонаты:

NaOH + СО 2 ŽNa 2 CO 3 + H 2 O

Поэтому как твердое вещество, так и растворы этих реагентов часто имеют примесь карбонатов. В лабораторной практике нередко приходится определять карбонат натрия в присутствии гидроксида натрия. Для этого можно применять 2 способа: первый - фиксированием (на кривой титрования Na 2 CO 3) двух точек эквивалентности (способ Уордера); второй- титрованием раствора NaOH, осадив сначала карбонат-ион CO 3 2- при помощи иона бария Ba 2+ (способ Винклера).

По первому способу титрование смеси карбоната натрия и гидроксида натрия хлороводородной кислотой выражается следующими уравнениями:

NaOH + Na 2 CO 3 +2HCI g 2NaCI + NaHCO 3 + H 2 O 3 + HCIg NaCI+ H 2 O+ СО 2 h

Первая фаза заканчивается при pH8,3 в области перехода окраски индикатора фенолфталеина, а вторая при pH3,85 в интервале изменения окраски метилового оранжевого. Следовательно, в первой точке эквивалентности оттитровывают с фенолфталеином весь NaOH и половину Na 2 CO 3 , а во второй оставшуюся половину карбоната натрия дотитровывают с метиловым оранжевым.

Взятие навески NaOH

Расчет навески на объем мерной колбы (250 мл):

Mr (NaOH) =40 m= ==1 гр . NaOH

Э(NaОH)= 40 г.

Взятие навески Na 2 CO 3

Mr (Na 2 CO 3) =106 m= =53*0, 1*0, 25= 1,3 гр . Na 2 CO 3

Э(Na 2 CO 3)=53 г

Ход работы

Навеску NaOH и Na 2 CO 3 , помещают в мерную колбу на 250 мл, растворяют дистиллированной водой и доводят объем до метки.

Затем берут пипеткой 10 мл данного раствора, переносят в другую колбу и добавляют 4-5 капель 0,1% раствора фенолфталеина, и титруют раствором HCI до обесцвечивания.

Затраченное количество HCI отмеряют по бюретке и записывают. Затем прибавляют в эту же колбу с раствором 2-3 капли метилового оранжевого, получают желтую окраску анализируемого раствора и титруют из той же бюретки HCI до появления оранжевого окрашивания. Снова делают отсчет по бюретке. Титрование повторяют 3 раза и, как всегда берут среднюю величину.

а) титрование с фенолфталеином:

1) 12,2 мл HCI

) 12,1 мл HCI V ср = 12,06мл HCI

2. N NaOH = NaOH ==0,048 (г-экв/л)

Вычисляем количество граммов гидроксида натрия, находящегося в 250 мл раствора:

m ==0, 6775(г)

Т акже вычисляются концентрация раствора и количество карбоната натрия:

N (Na 2 CO 3) ==0, 06715 (г-экв/л) = =0, 8976 (г)

Д ля повышения точности анализа рекомендуется: а) титрование с фенолфталеином вести осторожно, особенно к концу, чтобы уменьшить возможность образования угольной кислоты; б) уменьшить поглощение СО 2 из воздуха анализируемым раствором, для чего не следует давать стоять раствору в открытой колбе до титрования, осторожно перемешивать его в процессе титрования.

Контрольная работа

Титрование с фенолфталеином:

1) 4, 4 мл HCI

2) 4,4 мл HCI

3) 4,6 мл HCI

Титрование с метиловым оранжевым:

1) 6,3 мл HCI

2) 6,4 мл HCI

3) 6,3 мл HCI

1) Следовательно, на титрование NaOH и половины Na 2 CO 3 израсходовали 4,6 мл HCI, а на весь NaOH и Na 2 CO 3 - 6,6мл HCI;

на половину Na 2 CO 3 - (6,3-4,4)=1,9мл

на все количество Na 2 CO 3 - (1,9*2)=3,8мл

2) на титрование NaOH и половины Na 2 CO 3 израсходовали 4,8 мл HCI, а на весь NaOH и Na 2 CO 3 6,7мл HCI.

на половину Na 2 CO 3 -(6,4-4,4) =2мл

на все количество Na 2 CO 3 - (2*2)=4 мл

на титрование NaOH - (6,4-4)=2,4 мл

) на титрование NaOH и половины Na 2 CO 3 израсходовали 5мл HCI, а на весь NaOH и Na 2 CO 3 6,8 мл HCI.

на половину Na 2 CO 3 - (6,3-4,6)= 1,7 мл

на все количество Na 2 CO 3 - (2*1,7) =3,4 мл

на титрование NaOH - (6,3-3,4)=2,9 мл

T HCI / NaOH = =г/мл

m NaOH =

) m NaOH =0, 0027*2, 5*10=0,0675гр.

) m NaOH =0, 0027*2,4*10=0,0648гр.

) m NaOH =0, 0027*2,9*10=0,0783гр.
=3

Использованная литература

1) Васильев В.П. Аналитическая химия, часть I Москва 1989

2) Золотов Ю.А. Аналитическая химия: проблемы и достижения Москва 1992

) Крешков А.П. Основы аналитической химии, часть II

) Логинов, Шапиро С.А. Аналитическая химия Москва1971

алкалиметрия (определение кислот).

В качестве рабочих растворов используют растворы кислот H 2 SO 4 и HCL, растворы гидроксидов NaOH и КОН. Так как эти вещества не могут быть использованы для приготовления титрованных растворов с приготовленным титром, то их титр устанавливают по исходным веществам. В качестве исходных для установления титров кислот используют Na 2 B 4 O 7 ∙10H 2 O(бура) или Na 2 CO 3 , а для установления титра растворов щелочей – щавелевую кислоту Н 2 С 2 О 4 ∙ 2 H 2 O или янтарную кислоту Н 2 С 4 О 4 О 4 .

5.2. Кривые титрования

В процессе титрования изменяются равновесные концентрации вещества, титранта и продуктов реакции. При этом пропорционально концентрации веществ изменяются концентрации этих веществ, изменяются свойства раствора.

График зависимости параметра системы, связанного с концентрацией титруемого вещества, титранта, или продукта от состава раствора в процессе титрования называют кривой титрования .

Кривые титрования помогают выбрать индикатор, оценить погрешность, наглядно проследить за ходом титрования. При построении кривых по осям можно откладывать разные величины.

Если по оси ординат отложить логарифм концентрации (или отношения концентраций) или величину, пропорциональную этому логарифму, получаются логарифмические кривые титрования. Если же по оси ординат откладывать концентрацию или физико-химический параметр, пропорциональный концентрации, получаются линейные кривые титрования. Чаще пользуются логарифмическими кривыми титрования.

По оси абсцисс обычно откладывают объём добавленного титранта V т или степень оттитрованности f – отношение объёма добавленного в данный момент титранта V т к исходному объёму титруемого вещества V о.

В процессе кислотно-основного титрования изменяется рН раствора, поэтому кривые титрования целесообразно строить в координатах f –pH или V т - рН. Рассмотрим на конкретных примерах построение кривых титрования.

5.2.1. Кривая титрования сильной кислоты сильным основанием

Пусть 100.0 мл 0,1 М раствора HCl титруют 0,1 М раствором NaOH. Допустим, что ионная сила раствора близка к нулю (это, конечно, не так, но учет ионной силы затруднит расчеты). Пренебрежём также и изменением объёма. Ионы Na + и Сl - не влияют на кислотно-основное равновесие. Составим таблицу значений рН и построим кривую титрования.

Таблица 5.1. Титрование 100 мл 0,1 М раствора соляной кислоты 0,1 М раствором гидроксида натрия

Рисунок 5.1. Кривая титрования сильной кислоты сильным основанием.

    Прямую, параллельную оси абсцисс и пересекающую ось ординат при pH 7,0, называют линией нейтральности .

    Прямую, параллельную оси ординат и пересекающую ось абсцисс при значении эквивалентного объема щелочи (VNaOH=100,0 мл), называют линией эквивалентности .

    Точку пересечения кривой титрования с линией эквивалентности, называют точкой эквивалентности , а пересечение кривой титрования с линией нейтральности – точкой нейтральности .

    Резкое изменение pH в области точки эквивалентности называют скачком титрования .

Выводы из кривой титрования

    Кривая симметрична относительно точки эквивалентности

    Точка эквивалентности совпадает с линией нейтральности

    Скачек титрования имеет большой интервал

5.2.2. Кривая титрования слабой кислоты сильным основанием

Пусть 100.0 мл 0,1 М раствора СН 3 СООН титруют 0,1 М раствором NaOH. В основе титрования лежит реакция СН 3 СООН + NaOH = СН 3 СООNa + H 2 O .

В начале титрования в растворе находится только слабая кислота. До точки титрования при титровании получается сопряженное слабое основание СН 3 СООNa и раствор представляет собой буферную смесь. В точке эквивалентности вся кислота оттитрована и рН раствора определяется наличием соли СН 3 СООNa. После точки эквивалентности основным источником гидроксильных ионов будет добавленное сильное основание. Составим таблицу значений рН, сделав те же допущения, что и в п. 5.2.1.

Таблица 5.2. Тирование100 мл 0,1 н. раствора уксусной кислоты 0,1 н. раствором гидроксида натрия

состав раствора

рН-определяющий

компонент

формула расчета рН

значение рН

СН 3 СООН,Н 2 О

pH=1/2pK к -1/2lgC k

СН 3 СООН, Н 2 О

буферная

pH=pK k – lg C k /C c

СН 3 СООН, Н 2 О

буферная

pH=pK k – lg C k /C c

СН 3 СООН, Н 2 О

буферная

pH=pK k – lg C k /C c

СН 3 СООН, Н 2 О

буферная

pH=pK k – lg C k /C c

СН 3 СООNa, Н 2 О

pH=7-1/2lgK k +1/2lgC o

СН 3 СООNa, Н 2 О

СН 3 СООNa, Н 2 О

СН 3 СООNa, Н 2 О

Рисунок 5.2. Кривая титрования слабой кислоты сильным основанием

Выводы из кривой титрования

    Несовпадение точки эквивалентности с точкой нейтральности и расположение точки эквивалентности в щелочной области.

    Скачок титрования 0,1 М уксусной кислоты намного меньше, чем соляной или другой сильной кислоты.

    Кривая несимметрична относительно линии нейтральности

5.2.3. Титрование многоосновных кислот и оснований

Многоосновные кислоты обычно являются слабыми и диссоциируют ступенчато. При этом, если последовательные константы кислотности различаются более, чем в 10 4 раз, то на кривых наблюдаются отчетливые скачки титрования. В противном случае скачки сливаются.

Рисунок 5.3 Кривая титрования ортофосфорной кислоты гидроксидом натрия

5.2.4. Факторы, влияющие на величину скачка титрования

На величину скачка титрования влияют все факторы, от которых зависят значения рН: константа диссоциации титруемого вещества, его концентрация, температура и ионная сила.

Чем слабее кислота (основание), тем выше рН в начале титрования и в области буферного действия, т.е. ветвь кривой титрования смещается в щелочную область. В точке эквивалентности образуется тем более сильное основание, чем слабее исходная кислота. В результате этого рН в точке эквивалентности смещается также в щелочную область. В то же время ветвь за точкой эквивалентности остается неизменной. Это приводит к тому, что скачок титрования уменьшается. Для кислот и оснований с К дисс ≤ 5∙10 -8 точка эквивалентности сливается с началом правой ветви, т.е. скачок титрования отсутствует и их нельзя оттитровать в водных растворах.

Чем меньше концентрация титруемого вещества и титранта, тем меньше скачок титрования. Практически невозможно оттитровать сильные электролиты с концентрацией меньше 1∙10 -4 М, а слабые с концентрацией меньше 1∙10 -2 М.

При изменении температуры сильно изменяется константа автопротолиза воды, входящая во многие формулы расчета рН. В результате при увеличении температуры скачок уменьшается и смещается в более кислую область. Ионная сипа влияет незначительно.

5.3. Индикаторы метода нейтрализации

Для фиксирования конца титрования используют визуальные (титрование с индикатором, цветным или флуоресцентным) и инструментальные методы (потенциометрическое, амперометрическое, фотометрическое титрование). Цветные индикаторы в кислотно-основном титровании – это слабые органические кислоты и основания, протонированные и непротонированные формы которых различаются по структуре и окраске. Существуют одноцветные (например, фенолфталеин) и двухцветные (например, метиловый оранжевый) индикаторы. Изменение окраски индикатора связано с таутомерией органических молекул, содержащих хромофор. Такие соединения обладают подвижными p-электронами, и в зависимости от распределения электронной плотности молекуле можно приписать несколько структур; предельные структуры называются таутомерами. На распределение электронной плотности влияет наличие ауксохромных групп. Ауксохромы связаны с ненасыщенным углеродным скелетом хромофора так, что положение двойных связей изменяется. Разность энергий основного и возбужденного (под действием света) состояний таких веществ мала, поэтому молекула поглощает свет в видимой части спектра, и вещество имеет определенную окраску. На рис. 5.4. показаны таутомерные переходы метилового оранжевого.

Рис. 5.4. Таутомерные переходы индикатора метилового оранжевого

Однако существуют соединения, не содержащие хромофоров, у которых под влиянием среды структура изменяется так, что появляются хромофорные группы. Таковы фталеины. Например, фенолфталеин в кислой среде бесцветен. В щелочной среде в результате перераспределения электронной плотности в его молекуле образуется хиноидная структура (хромофор), находящаяся в равновесии со своей таутомерией формой. Вещество приобретает красную окраску.

Группу индикаторов, схожую с фталеинами, составляют сулъфофта леины: бромкрезоловый зеленый, феноловый красный, тимоловый синий и другие соединения. Например, в растворе фенолового красного в равновесии находятся красная и желтая формы.

Отдельную группу составляют трифенилметановые красители: кристаллический фиолетовый, метиловый фиолетовый, малахитовый зеленый и др.

По химической природе кислотно-основные индикаторы являются слабыми органическими кислотами или основаниями, частично диссоциирующими в растворе:

HInd ↔ H + + Ind - ,

где HInd – недиссоциированная молекула индикатора; Ind - – анион индикатора. Согласно теории ионных окрасок Оствальда, HInd и Ind - имеют разную окраску. Изменение цвета индикатора при изменении pH эта теория связывает со смещением равновесия диссоциации индикатора. С увеличением концентрации ионов водорода это равновесие смещается влево (в соответствии с принципом Ле Шателье), и раствор приобретает окраску HInd; при уменьшении кислотности возрастает концентрация Ind - , и окраска раствора изменяется. Равновесие диссоциации индикатора характеризуется константой диссоциации K HInd

K HInd = ( )/ (5.1)

Рассмотрим один из наиболее распространенных индикаторов – метиловый оранжевый. Кислая форма HInd у него имеет красный цвет, а основная Ind- – желтый. Из выражения (5.1) можно получить

K HInd / = / (5.2)

Это соотношение показывает, что с увеличением концентрации ионов водорода дробь / будет уменьшаться. Если кислотность раствора снижать, то отношение / будет расти, и интенсивность желтой окраски увеличится. При логарифмировании (5.2) получаем

pH = pK HInd + lg / (5.3)

Глаз человека способен установить появление окрашенных частиц, если их содержание будет примерно в 10 раз или более превышать концентрацию других окрашенных частиц в растворе. Это означает, что если отношение / будет близко к значению 10/1 и больше, то цвет раствора на глаз будет восприниматься как цвет индикаторной формы Ind , а если отношение / будет близко к 1/10 и меньше, то цвет раствора будет восприниматься как окраска индикаторной формы HInd. При выполнении условия 0,1 ≤ / ≤ 10 наблюдается промежуточная окраска индикатора.

Интервал pH, в котором индикатор изменяет свою окраску, называется интервалом перехода индикатора .

Чтобы его найти, подставим предельные значения отношения /, равные 10 и 0,1, в уравнение (5.3)

ΔpH = pK HInd ± 1. (5.4)

Выражение (5.4) показывает, что интервал перехода индикатора составляет примерно две единицы pH. Область pH, в которой находится интервал перехода, определяется величиной pKHInd. Если pK HInd < 7, интервал перехода находится в кислой области; если pK HInd > 7 – в щелочной. Соотношение (5.4) является приближенным, так как оно не учитывает спектральную чувствительность глаза и разницу в интенсивности окраски кислотной и щелочной форм индикатора. Например, у метилового оранжевого pK HInd =3,36. Из формулы (5.4) следует, что изменение цвета метилового оранжевого будет происходить в области pH от 2,36 до 4,36. Экспериментально наблюдаемый интервал перехода этого индикатора лежит в области pH 3,1…4,4. В таблице 5.3 приведены параметры некоторых часто используемых кислотно-основных индикаторов.

Таблица 5.3. Кислотно-основные индикаторы

Кислотно-основные индикаторы изменяют свою окраску в области интервала перехода, независимо от того, достигнута или не достигнута точка эквивалентности.

Правильно выбранный индикатор изменяет окраску в области скачка титрования. Наблюдаемое при титровании резкое изменение цвета индикатора при добавлении лишь одной капли титранта связано с резким (в несколько единиц) изменением pH в области скачка. У неправильно выбранного индикатора изменение окраски может происходить задолго до наступления точки эквивалентности (в недотитрованных растворах) или после нее (в перетитрованных). При этом изменение цвета раствора не будет столь резким, как вблизи точки эквивалентности.

Выбирают индикатор с помощью кривой титрования. Для этого на график кривой титрования наносят интервал перехода индикатора. У правильно подобранного индикатора интервал перехода полностью или частично перекрывается скачком титрования. Если такого перекрывания нет, индикатор для данного титрования не подходит. Отличным индикатором для рассмотренного выше титрования сильной кислоты сильным основанием является лакмус, интервал перехода которого находится в середине скачка титрования (рис. 5.1). Фенолфталеин также может быть использован для данного титрования, так как его интервал перехода (8,2…9,8) захватывает область скачка титрования. Явно непригодным индикатором для титрования 0,1 М HCl раствором NaOH был бы, например, метиловый оранжевый (табл. 5.3).

Величину pH, при которой заканчивается титрование с данным индикатором, называют показателем титрования и обозначают pT. Показатель титрования находится близко к середине интервала перехода индикатора. У метилового оранжевого pT 4,0, у фенолфталеина 9,0 и т.д. Правило выбора индикатора можно сформулировать также, пользуясь понятием pT. Индикатор пригоден для данного титрования, если его pT лежит в пределах скачка титрования.

Примеры решения задач

Пример 1. Определить содержание хлороводорода в растворе, если на нейтрализацию 25 см 3 раствора НСl, взятого пипеткой из мерной колбы ёмкостью 500,00 см 3 , расходуется 21,65 см 3 0,0962 н раствора NaOH.

    определяем концентрацию раствора НСl:

N НС l ∙ V НС l = N NaOH ∙ V NaOH

N НС l = (0, 0962 ∙ 21.65)/25.00 = 0.0836 моль/л

    Находим титр НСl:

Т НС l = (N НС l ∙ m eq HCl) /1000 = (0.0836 ∙ 36.5)/1000 = 0.003051 г/см 3

    Вычисляем массу хлороводорода в растворе:

m НС l = T НС l ∙ V = 0.003051 ∙ 500 = 1.5257 г

Пример 2. Определить массовую долю гидроксида натрия в образце, если навеска технического едкого натра массой 0,1095 г растворена в воде и на титрование полученного раствора израсходовано 25,50 см 3 0,1002 н раствора Н 2 SO 4 .

  1. 1) Находим массу NaOH, находящуюся в приготовленном растворе:
  2. m NaOH = T HSO4/NaOH ∙ V H2SO4 = (N H2SO4 ∙ m eqNaOH ∙ V H2SO4)/ 1000 = (0.1002 ∙40.01 ∙25.50)/1000 = 0.1022 г
  3. ) Находим массовую долю гидроксида натрия в образце:

W = (m NaOH ∙ 100) / m навески = (0,1022 ∙ 100)/0,1095 = 93,36 %.

Пример 3. Какую навеску технического NaOH, содержащего 40% примесей, необходимо взять для определения NaOH, если для определения полученного раствора израсходовано 30.00 см 3 0,1000 н раствора HCl.

1) Определяем массу NaOH, содержащуюся в навеске, взятой для анализа:

m NaOH = T HCl / NaOH ∙ V HCl = (N HCl ∙ m eqNaOH ∙ V HCl)/1000 = (0.1000 ∙ 40.01∙30.00)/1000 = 0.1200 г

2) Находим массу навески технического NaOH:

m навески = (m NaOH ∙ 100)/W NaOH) = (0.1200 ∙ 100)/40 = 0.3001 г

В основе метода нейтрализации лежит реакция нейтра­лизации:

н+ + он- ->- н 2 о.

Метод нейтрализации применяется для количествен­ного определения кислот и щелочей. При помощи этого метода проводят также ряд других объемных опреде­лений, связанных с реакцией нейтрализации, например определение некоторых солей, образованных сильными основаниями и слабыми кислотами (Na 2 C0 3 , Na 2 B 4 07), или солей аммония.

При количественном определении кислот - алкали­метрия - рабочим раствором является раствор щелочи NaOH или КОН. Приготовить титрованный раствор щело­чи по навеске невозможно, так как щелочь не отвечает тре­бованиям, предъявляемым к веществам, из которых можно готовить раствор точной концентрации по точно взятой навеске. Кроме того, при самом тщательном хра­нении растворы щелочей довольно быстро меняют свой титр, поэтому титр этих рабочих растворов устанавли­вают. Исходным веществом для установления титра ра­бочего раствора щелочи может служить щавелевая кис­лота Н 2 С 2 0 4 -2Н 2 0 или янтарная кислота Н2С4Н4О4. Часто в лабораторной практике в качестве исходного

раствора употребляют 0,1 н. раствор кислоты, приго­товленный из фиксанала.

При количественном определении щелочи - ациди-метрии - рабочим раствором является раствор сильной кислоты (обычно НС1 или H 2 S0 4 J. Приготовить титро­ванный раствор кислоты исходя из концентрированной кислоты невозможно. Как бы точно мы ни взяли на­веску концентрированной кислоты, мы не будем знать истинного ее количества, так как серная кислота гигро­скопична, а концентрированная соляная кислота выде­ляет хлористый водород. Поэтому титр рабочих раство­ров кислот устанавливают. Исходным веществом для установки титра раствора кислоты служит бура Na 2 B 4 0r- 10Н 2 О или химически чистая сода Na 2 C0 3 . В некоторых случаях рабочий раствор кислоты готовят из фиксанала. Титр раствора кислот не меняется до­вольно продолжительное время.

Метод нейтрализации применяется в. клинических лабораториях для определения кислотности желудочно­го сока. В санитарно-гигиенических лабораториях метод нейтрализации находит самое широкое применение. При помощи этого метода определяют карбонатную жест­кость воды, кислотность молочных продуктов, квашеной капусты и безалкогольных напитков.

Если титровать раствор любой кислоты раствором щелочи, происходит связывание ионов Н+ кислоты ионами ОН — и концентрация ионов Н+ постепенно уменьшается, а рН раствора возрастает (см. § 18). При определенном значении рН достигается точка эквива­лентности и титрование должно быть закончено. При титровании раствора щелочи раствором кислоты свя­зываются ионы ОН~, концентрация их в растворе умень­шается, а концентрация ионов Н+ увеличивается и рН раствора уменьшается. Однако величина рН в точке эк­вивалентности не во всех случаях имеет одно и то же значение, она зависит от природы реагирующей кисло­ты и основания.

При нейтрализации сильной кислоты силь­ным основанием

НС1 + NaOH = NaCl + Н 2 0

образуется только один слабый электролит - вода. Ре­акция практически доходит до конца. Образующаяся при реакции соль гидролизу не подвергается, и раствор

имеет нейтральную реакцию (рН 7,0). Следовательно, при титровании сильной кислоты сильной щелочью и наоборот в точке эквивалентности среда раствора нейт­ральна, рН раствора равен 7,0.

Если титровать сильной — щелочью слабую кислоту, например, уксусную

CH 3 COOH + NaOH =s=fc CH 3 COONa-f Н 2 0,

в точке эквивалентности будет присутствовать соль CH 3 COONa, подвергающаяся гидролизу:

CH 3 COONa + Н 2 0 ? -f СН 3 СООН + NaOH.

Следовательно, протекающая в данном случае при тит­ровании реакция обратима и не пойдет до конца. В точке эквивалентности в растворе присутствуют свобод­ные СНзСООН и NaOH. Слабая уксусная кислота бу­дет находиться в растворе в основном в виде недиссо-циированных молекул, а едкий натр будет диссоцииро­ван почти полностью. Концентрация ионов ОН — пре­высит концентрацию ионов Н+ и титрование закончится при рН>7,0. При титровании слабых оснований сильными кислотами, например

NH4OH + НС1 т-*■ NH4CI + н 2 о,

образующаяся соль подвергается гидролизу. Реакция нейтрализации обратима, и в точке эквивалентности концентрация ионов Н+ превысит концентрацию ионов ОН~. Титрование будет заканчиваться при рН<7,0.

Таким образом, при методе нейтрализации точка эквивалентности совпадает с точкой нейтральности лишь при взаимодействии сильной кислоты с сильным основанием. При титровании необходимо установить точку эквивалентности, а не нейтральности и, следова­тельно, титрование в разных случаях приходится за­канчивать при различных значениях рН.