Половые клетки и оплодотворение. Процесс оплодотворения яйцеклетки Ранние этапы развития зародыша. Бластула. Гаструла

Оплодотворение, исходный момент возникновения новой генетической индивидуальности, представляет собой процесс соединения женской и мужской гамет.

В результате оплодотворения возникает одноклеточный зародыш с диплоидным набором хромосом и активируется цепь событий, лежащих в основе развития организма.

Биологическое значение оплодотворения огромно: будучи предпосылкой развития новой индивидуальности, оно вместе с тем является условием продолжения жизни и эволюции вида.

Следует подчеркнуть, что оплодотворение представляет собой не одномоментный акт, но именно процесс, занимающий более или менее продолжительный отрезок времени. Это многоступенчатый процесс, в котором различаются следующие этапы: привлечение сперматозоида яйцом, связывание гамет и, наконец, слияние мужских и женских половых клеток. В научной литературе события, связанные со сближением гамет иногда называют осеменением различая наружное и внутреннее осеменение, в зависимости от того, выводятся мужские половые клетки в окружающую среду или в половые органы женской особи. Наружное осеменение характерно для животных, обитающих в водной среде. Внутреннее осеменение присуще главным образом наземным животным, хотя оно достаточно часто встречается и у обитателей водной среды. Осеменение может быть свободным при котором все области ооцита доступны спермиям, но может быть и ограниченным, когда на поверхности яйцеклетки имеется плотная оболочка с микропиле. При внутреннем осеменении у ряда животных мужские гаметы передаются самкам в виде сперматофоров , особых капсул, содержащих сперматозоиды. Сперматофоры сначала выводятся в окружающую среду, а затем тем или иным способом переносятся в половые пути самки.

Соединение гамет предопределяет возможность кариогамии , или слияния ядер. Благодаря кариогамии происходит объединение отцовских и материнских хромосом, ведущее к образованию генома новой особи. В результате слияния гамет возникает диплоидная зигота, восстанавливается способность к репликации ДНК и начинается подготовка к делениям дробления. Механизмы активации яйца к развитию относительно автономны. Их включение может быть осуществлено и помимо оплодотворения, что происходит, например, при естественном или искусственном девственном развитии, или партеногенезе .

Интерес к проблеме оплодотворения выходит далеко за рамки собственно эмбриологии. Слияние гамет - плодотворно используемая модель для изучения тонких молекулярных и клеточных механизмов специфического взаимодействия клеточных мембран; для изучения молекулярных основ активации метаболизма и пролиферации соматических клеток. Общебиологический интерес представляет и то, что оплодотворение являет собой яркий и, может быть, уникальный пример полного обращения клеточной дифференциации. Действительно, высокоспециализированные половые клетки не способны к самовоспроизведению. Они гаплоидны и не могут делиться. Однако после слияния они превращаются в тотипотентную клетку, которая служит источником формирования всех клеточных типов, присущих данному организму.

История открытия оплодотворения теряется в глубине веков. Во всяком случае, в XVIII столетии итальянский естествоиспытатель аббат Лаццаро Спалланцани (1729-1799) экспериментально доказал, что оплодотворение зависит от наличия спермы, и впервые осуществил искусственное оплодотворение яиц лягушки, смешивая их со спермой, полученной из семенников. Тем не менее смысл происходящих при этом событий оставался неясным практически до последней четверти XIX века, когда Оскар Гертвиг (1849-1922) в конце 1870-х годов, изучая оплодотворение у морских ежей, пришел к заключению, что сущность этого процесса состоит в слиянии ядер половых клеток. Вместе с работами бельгийца Эдуарда ван Бенедена (1883, аскарида), немецкого ученого Теодора Бовери (1887, аскарида), швейцарского зоолога Германа Фоля (1887, морская звезда) исследования О. Гертвига заложили основу современных представлений об оплодотворении. Следует подчеркнуть, что именно эти работы послужили веским основанием для предположения о том, что ядро является носителем наследственных свойств. Именно Т. Бовери (1862-1915) в серии блестящих цитологических исследований обосновал в конце 1880-х годов теорию индивидуальности хромосом и создал основу цитогенетики.

Вскоре после выяснения сущности оплодотворения исследователи сосредоточили внимание на механизмах, лежащих в основе этого процесса. Эта область исследований сохраняет актуальность и в наше время. Пальма первенства в построении теории оплодотворения принадлежит американскому исследователю Франку Лилли (1862-1915). Изучая свойства «яичной воды», т. е. морской воды, в которой некоторое время находились неоплодотворенные яйца морского ежа Arbacia или полихеты Nereis, Лилли обнаружил, что из яиц выделяется вещество, которое обладает способностью склеивать спермин в комки. Наблюдаемая агглютинация оказалась видоспецифичной, и Лилли назвал фактор агглютинации, выделяемый неоплодотворенным яйцом, веществом оплодотворения, или фертилизином (от англ. fertilization - оплодотворение). Суть выдвинутой Лилли теории оплодотворения состоит в признании того, что в периферической области яйца находится фертилизин, который имеет сродство к поверхностным рецепторам спермия (антифертилизин спермия). Благодаря этому сродству фертилизин связывает, согласно Лилли, спермии. Однако, чтобы претендовать на универсальность и объяснить не только механизм соединения гамет, но и причины агглютинации спермиев, возможность предотвращения полиспермии, высокую специфичность процесса оплодотворения и т д., теория фертилизина нуждалась в многочисленных допущениях, под гнетом которых она в конце концов и угасла.

Уже в ходе ранних исследований оплодотворения возникло представление о гамонах - веществах, которые обеспечивают активацию или блокирование отдельных этапов оплодотворения. В соответствии с их происхождением различали гиногамоны, выделяемые яйцеклетками, и андрогамоны, вырабатываемые мужскими половыми клетками. Так, полагали, что гиногамон 1, диффундируя из яйца, активирует движение сперматозоида, преодолевая действие андрогамона 1, который ингибирует движение сперматозоида. Гиногамон 2 - синоним фертилизина, а андрогамон 2 - антифертилизина спермия.

В пятидесятые годы XX столетия идея о взаимодействии фертилизина с антифертилизином трансформировалась в гипотезу специфического фагоцитоза. Согласно этой концепции, наличие на поверхности яйца и спермия взаимодействующих молекул обеспечивает комплементарную реакцию по принципу застежки «молнии», благодаря которой спермий оказывается поглощенным яйцом.

Несмотря на известную умозрительность, эти и многие другие подобные гипотезы о механизмах взаимодействия сперматозоидов и яиц сыграли свою положительную роль, обнаружив, во-первых, существование целого семейства специфических молекул на поверхности взаимодействующих гамет и, во-вторых, положив начало планомерным исследованиям природы этих молекул.

Вторая половина прошлого столетия - период расцвета ультраструктурных и молекулярно-биологических исследований, которые выявили большое разнообразие конкретных форм клеточного взаимодействия при оплодотворении. Стало ясно, что универсальная теория оплодотворения, если и может существовать, то только как свод некоторых самых общих принципов организации этого процесса.

Конкретные механизмы оплодотворения зависят от множества факторов. Достаточно сказать о своеобразии оплодотворения у животных с наружным и внутренним осеменением. Очевидно, что определенные различия процесса оплодотворения обусловлены и тем, что у разных животных проникновение спермия в яйцо происходит на разных этапах оогенеза. У многих аннелид, моллюсков, нематод и ракообразных сперматозоид проникает в ооциты первого порядка на стадии профазы. У других кольчатых червей, моллюсков и у насекомых - на стадии метафазы первичного ооцита. Для многих позвоночных характерно осеменение на стадии метафазы вторичного ооцита. У некоторых кишечнополостных и у морских ежей оплодотворение происходит на стадии зрелого яйца уже после завершения делений созревания и выделения направительных, или редукционных телец. Наконец, нельзя не вспомнить и разнообразие типов сперматозоидов, среди которых имеются жгутиковые формы и спермин без жгутиков (например, амебоидные спермин нематод), с акросомой и без нее, имеющие акросомную нить и лишенные ее. Естественно, что в каждом таком случае конкретные механизмы, обеспечивающие тонкое взаимодействие между половыми клетками, различаются.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Половая культура - часть общей культуры.

Второй закономерностью является изменение соотношения биологического и социального, их роли в становлении сексуальности.

Первая из которых - фазность.

Для всех этапов психосексуального развития, а также для каждой стадии III этапа существуют общие закономерности,

В результате повышенной склонности к фантазированию и задержек реализации либидо, обусловленных социальными факторами, женщины более подвержены отклонениям в психосексуальном развитии.

Преемственность и взаимосвязь этапов (стадий), а также их нарушений представляет собой третью закономерность психосексуального развития, причем на каждом этапе (стадии) становления сексуальности имеются задатки последующего.

Образуется как бы сцепление этапов (стадий), и выпадение по тем или иным причинам любого из них искажает течение последующих и в итоге становление всей сексуальности.

Отсутствие или нарушение ранних этапов психосексуального развития приводят к грубым деформациям, затрагивающим ядро личности, которые по аналогии с психопатиями можно назвать «ядерными».

Разделение психосексуального развития на этапы условно, так как половое самосознание, половая роль и психосексуальные ориентации тесно взаимосвязаны и представляют собой динамичные структуры, меняющиеся не только в процессе их формирования, но и в течение всей последующей жизни, хотя основы всех компонентов сексуальности закладываются при их становлении.

Понятия «Половое воспитание» и «Половое образование».

Половое воспитание, система медико-педагогических мер по воспитанию у родителей, детей, подростков и молодёжи правильного отношения к вопросам пола.

Цель П. в. - способствовать гармоничному развитию подрастающего поколения, повышению сексологических знаний, полноценному формированию детородной функции, чувства ответственности за здоровье и благополучие будущей жены (мужа), детей, т. е. укреплению брака и семьи.

Следовательно, П. в. связано со сложными медико-педагогическими и социальными проблемами, где тесно переплетаются физиолого-гигиенические, педагогические, морально-этические и эстетические аспекты.

В течение многих веков трактовка вопросов П. в. определялась традициями, освященными религией. Только в 20 в. начались попытки научного подхода к проблемам П. в.; во 2-й половине 20 в. повсеместным становится интерес к ним со стороны не только специалистов-педагогов, сексологов и др., но и общественности, государственных органов. Это связано, в частности, с распространением среди молодёжи многих капиталистических стран взглядов, отрицающих какие-либо ограничения и моральные нормы в половой жизни ("единая половая мораль - свободная любовь"), с ростом венерических заболеваний, абортов и родов у несовершеннолетних и т.д.



Во многих странах (США, Швеция, ФРГ, ГДР и др.) проводится преимущественно половое просвещение - подробное ознакомление детей и подростков (начиная со старшего дошкольного и младшего школьного возрастов) с анатомо-физиологическими, сексологическими, гигиеническими и др. сведениями, касающимися вопросов пола и половой жизни.

В СССР П. в. включает половое просвещение на более позднем этапе (начиная с 8-го класса средней школы).

Принципы П. в. вытекают из общих принципов воспитательной работы :

Проводится как составная часть общего комплекса учебно-воспитательных мероприятий в семье, дошкольных учреждениях, школе, молодёжных организациях и т.д.

На основе единого подхода со стороны родителей, педагогов и воспитателей, медицинских работников;

Имеет дифференцированный - в соответствии с полом, возрастом и степенью подготовленности ребёнка (родителей) - и поэтапный (преемственный) характер; подразумевает сочетание с благоприятной нравственной атмосферой и гигиеническими условиями.

В П. в. условно выделяют несколько этапов.

В 2-3 года у ребёнка формируется сознание принадлежности к определённому полу, появляются понимание различий в строении тела мальчика и девочки, вопросы типа "Откуда я взялся?". Эти наблюдения и вопросы - следствие естественного процесса познавания окружающего мира, они не имеют ещё сексуального характера. Отвечать на них рекомендуется в доступной ребёнку форме, кратко, без излишней детализации (например, описания строения и функции половых органов), так как последняя может пробудить у ребёнка интерес к сексуальным подробностям, о которых он не подозревал и, естественно, не спрашивал.

Поскольку, как правило, более точный ответ на вопрос "Откуда берутся дети?" ребёнок стремится получить лишь в 5-7-летнем возрасте, а вопрос о роли отца в его рождении начинает возникать у ребёнка в 6-8 лет (P. Нойберт), до этого времени детей вполне удовлетворяют формальные ответы типа: "Я родила тебя в родильном доме", "Ты вырос у меня в животике" и т.п. Можно привести примеры из жизни животных, но не следует уклоняться от ответа или прибегать к сказкам о "капусте", "аистах", "базаре" и т.п. Смущение старших, их отказ ответить на вопрос или вскоре разоблачаемая ложь вызывают недоверие ребёнка к ним, обострённый интерес к таинственной стороне жизни и потребность удовлетворить любопытство с помощью более "осведомлённых" старших товарищей.

2 этап Детей младшего школьного возраста обучают общим морально-этическим и гигиеническим правилам, важным для нормального полового развития. Существенную роль, как и на др. этапах П. в., играет организация рационального режима и питания. В дошкольном и младшем школьном возрасте ребёнок может влюбляться (чаще в старшего, обычно красивого или сильного человека), старается быть ближе к любимому, ласкаться, ухаживать за ним. В таких случаях не следует фиксировать внимание на этой влюблённости, надо постараться переключить внимание ребёнка на новые игры, чтение и др. занятия - влюблённость пройдёт сама. Как и на др. этапах П. в., важны положительные примеры корректных взаимоотношений родителей и других взрослых.

Периоду полового созревания соответствует 3-й этап П. в. Как правило, этот период не сопровождается нарушениями в состоянии здоровья; могут наблюдаться повышенная утомляемость, раздражительность, снижение внимания. Задача родителей - сообщить ребёнку необходимые сведения о физиологических особенностях растущего организма и обучить его соответствующим специальным правилам гигиены. Прежде всего родителям нужно подготовить девочку к появлению менструаций (см. Менструальный цикл) - по данным опросов, 70% девочек узнают об этом именно от матерей; мальчика - к поллюциям. Необходимо научить девочек правилам специального туалета, ведения менструального дневника, рассказать об одежде, питании, режиме в эти периоды и т.д. Мальчики также должны быть ориентированы, что поллюции - естественное явление и что они требуют соблюдения элементарной гигиены. Необходима настойчивая, но тактичная борьба с нередким в это время злоупотреблением онанизмом, которая не должна принимать формы запугивания его "страшными" последствиями.

Основная задача 4-го и 5-го этапов П. в. (соответственно подростков старшего школьного возраста и юношей и девушек, окончивших школу) - освещение вопросов взаимоотношения полов как комплексной нравственной, социальной и гигиенической проблемы, изложение основ гигиены половой жизни, профилактики венерических заболеваний и абортов, морально-этических вопросов и гигиены брака.

Начиная с периода полового созревания подростки ищут и утверждают свои идеалы; они очень критичны, легко идут на конфликты со взрослыми, часто переоценивают собственные нравственные достоинства или, наоборот, страдают от своих воображаемых недостатков. Основным мотивом поведения пробуждающейся женщины постепенно становится желание нравиться окружающим, затем - представителям именно мужского пола, стремление к сопереживанию, к любви и ласке. Чтобы привлечь к себе внимание, девочки стараются улучшить свою внешность модной причёской, одеждой, косметикой. Одновременно усиливается интерес к более точным сведениям о "тайнах" любви. Юноши утверждают своё "я" под девизом "всё могу как взрослый" (в т. ч. курить, пить алкогольные напитки и пр.), начинают присматриваться к девушкам. Нередко прежние привязанности к подругам (у девочек) и товарищам (у мальчиков) постепенно отходят на второй план. Молодые люди стремятся подавить в себе неясные желания, но не знают, как это сделать, не умеют найти себя в обществе сверстников противоположного пола, часто ищут помощи и поддержки со стороны взрослых, но только при условии их тактичности. Советы родителей и учителей относительно поведения принимаются с благодарностью, если они не носят характера императива или запрета (в этом случае запрет явно или тайно нарушается). Умение взрослого видеть прекрасное (и природе, искусстве, труде, человеке), сделать себя приятным для других, уважительно, бережно относиться к окружающим привлекает внимание молодого человека и оказывает на него влияние.

После проникновения в половые пути самки, сперматозоид проявляет оплодотворяющую способность после процесса Капоцитации . Его суть: головка сперматозоида имеет участки, содержащие фермент гликозилтрансферазу. Но этот фермент блокирован галактозом и N-ацетилглюкозамином. Гликопротеиды, выделяемые в половые пути самки, освобождают блокирующие ферменты. Тогда сперматозоид способен узнавать N-ацетилглюкозаминовые остатки в зоне пиллюцида (оболочка, покрытая слоем фолликулярных клеток). Тогда фермент находит потенциальный субстрат. Далее идет 2-й процесс, инициируемый оболочками яйцеклетки – Акросомальная реакция. Ее механизм: после контакта со студенистой оболочкой, в сперматозоид поступают ионы Са. При внешнем осеменении ионы Са поступают из воды, а при внутреннем из эндоплазматического ретикулюма. Параллельно идет процесс перестройки мембранных процессов, обеспечивающих поступление внутрь Na и протонов во вне. Так идет повышение рН, приводящее к полимеризации актина. Далее активизируется домеиновая АТФаза. Потом происходит экзоцитоз акросомального пузырька – двойная мембрана заменяется на одинарную. На образовавшемся акросомальном выросте появляется белок бендин (узнает рецепторы на яйцеклетке). У хвостатых амфибий, реп­тилий и птиц в яйцо довольно часто проникает не один, а не­сколько сперматозоидов, и у яиц этих животных выработались специальные механизмы, инактивирующие ядра избыточных спер­матозоидов. У большинства других позвоночных Полиспермия Предотвращается поверхностными реакциями, которые препятству­ют проникновению в яйцо более чем одного сперматозоида. В яй­цах таких животных имеется поверхностный слой кортикальных гранул; в яйцах тех позвоночных, которые допускают проникнове­ние нескольких сперматозоидов, таких гранул нет. У позвоночных, допускающих проникновение в яйцо лишь од­ного сперматозоида, первая реакция, возникающая в ответ на слияние сперматозоида с яйцом, состоит в быстром изменении электрических свойств плазматической мембраны яйца. Положительный мембранный потенциал препят­ствует возникновению полиспермии,- тогда как снижение потен­циала у только что оплодотворенного яйца делает ее возможной. Акросома сперматозоида содержит гидро - и ротелитические ферменты, например, акрозин, сходный с хемотрипсином. Акросома содержит фермент (георуронидаза), расщепляющая лучистый венец. Эти ферменты обеспечивают проникновение сперматозоида в яйцеклетку. В зоне контакта происходит дезантеграция мембраны яйцеклетки и сперматозоида. В зоне контакта образуются мицеллы с образованием бреши и содержимиое сперматозоида проникает внутрь. Событием, препятствующим полиспермии и возни­кающим спустя несколько минут после проникновения в яйцо спер­матозоида, является Кортикальная реакция. Кортикальные грану­лы, начиная с той точки, в которой произошло слияние яйца со сперматозоидом, перемещаются к внутренней поверхности плаз­матической мембраны, сливаются с ней, а затем выделяют свое содержимое в пространство, окружающее яйцо. После высвобождения содержимого кортикальных гранул про­никновение в яйцо других сперматозоидов блокируется изменения­ми в зоне пиллюцида и плазматической мембраны яйца. Механизм корт. реак. похож на акросомальную реакцию – экзоцитоз ферментов в пространство между плазматической мембраной и желтковой оболочкой. В этих гранулах есть полисахариды, обеспечивающие проникновение воды. Кроме воды попадают и другие вещества. Гиолин создает на мембране гиолиновый слой, обеспечивающий удержание бластомеров при дроблении. Еще образует защиту от сперматозоидо. У млеков есть реакция зоны, когда сперматозоиды проникают внутрь, на яйцеклетке изменяются рецепторы и не дают проникновению другим сперматозоидам. После проникновения сперматозоида в яйцеклетку происходит деконденсация генетического материала и разрушение ядерной оболочки. Вокруг деконденсированного генетического материала образуется новая оболочка. Образуется 2 пронуклюуса, совершающие движения – пляска пронуклюксов. После этого оболочки ядер дезонтегрируются и хромосомы удваиваются с последующим митотическим деление. Это последний этап, имеющий препятствие для гибридизации.

Откопал старый текстик у себя в закромах, решил опубликовать здесь. Не знаю, насколько интересен этот вопрос моей аудитории, но то, что он интересен подавляющему большинству моих друзей и знакомых - это точно. Причем, как оказалось, не просто интересен, а еще и мало понятен. Видимо, в силу того, что с половым воспитанием в нашей стране полный ах.

Зачатие ребенка

Надеюсь, никому не надо объяснять, что непорочного зачатия все же не существует. Зачатию ребенка предшествует половой акт (кстати, по-латыни он называется коитус – coitus). Из-за особенностей строения женских половых путей сперма попадает большей частью в задний свод влагалища (условно можно сказать «ближе к позвоночнику»), где в это время ее уже поджидает так называемая «слизистая пробка» – сгусток слизи, «принимающий» в себя сперму и втягивающийся с нею обратно в матку. Эта пробка выделяется в момент возбуждения женщины, которое сопровождается сокращениями мускулатуры матки и открытием наружного зева ее шейки. Здесь хочу отметить одну занимательную вещь – вы можете сами определить момент появления пробки из шейки матки. Думаю, многие замечали, что во время полового акта зачастую из влагалища женщины доносятся, извините за выражение, «пердящие» звуки. Дамы, бывает, этого смущаются, а зря. Ведь именно такие звуки и говорят о том, что слизистая пробка появилась и готова к приему спермы. Попутно хочу заметить, что в задний свод влагалища попадает только 2-3 мл спермы, остальная часть благополучно вытекает из влагалища.

Строение сперматозоида и яйцеклетки

Давайте немного отойдем от повествования и посмотрим, что представляют собой основные его участники – сперматозоид и яйцеклетка. Яйцеклетка – это одинарная клетка, достаточно крупная. Срок ее жизни – 24 часа с момента выхода из яичника. Сперматозоиды же – «живчики», сохраняют способность к оплодотворению несколько суток (от трех до пяти). И именно из-за таких особенностей наиболее благоприятными сроками оплодотворения являются день овуляции и несколько суток до и после. Причем необходимо еще учесть, что сперматозоиды движутся не так уж и быстро по человеческим меркам – сутки и даже более требуются им, чтобы добраться до цели. На этих принципах основан метод предохранения от беременности. Вы можете и сами определить день овуляции и рассчитать благоприятные дни для наступления беременности с помощью измерения так называемой базальной температуры – температуры в прямой кишке. Во время овуляции она на градус выше нормы. Но этот метод очень ненадежен, так как температура может повышаться из-за множества причин – стрессов, физической активности, различных заболеваний (особенно простудных).

Сперматозоид намного меньше яйцеклетки и в отличие от нее подвижен. Грубо говоря, сперматозоид – это узкоспециализированная клетка, имеющая ядро с хромосомами и жгутик, с помощью которого он передвигается. Причем скорость передвижения по нашим меркам ничтожна – 30-50 мкм/с (один микрометр – одна миллионная доля метра), однако сам сперматозоид тратит очень много энергии для того, чтобы передвигаться с такой скоростью. Как же он находит яйцеклетку? Дело в том, что яйцеклетка выделяет особые вещества, которые «привлекают» сперматозоиды, а сперматозоиды, в свою очередь, обладают хемотаксисом – способность целенаправленно двигаться в направлении «пахнущей» яйцеклетки. Попав в половые пути женщины, сперматозоиды сохраняют способность к оплодотворению в среднем 3-5 суток.

Оплодотворение яйцеклетки

Но вернемся к моменту оплодотворения яйцеклетки. После того, как слизистая пробка втянулась в матку, сперматозоиды продолжают движение уже самостоятельно.

В нормальных условиях примерно через полчаса-час сперматозоиды попадают в матку, а через полтора-два часа – в ампулу маточной трубы, где их уже поджидает яйцеклетка. Хотя нет, не поджидает – ожидания никакого не предусмотрено. Либо яйцеклетка оплодотворяется и дальше по трубам движется уже зародыш, либо неоплодотворенная яйцеклетка погибает.

Конечно, яйцеклетку находят сразу много сперматозоидов. Они внедряются в ее оболочку и своими движениями начинают раскручивать, разрыхляя ее таким образом. А оболочка у нее состоит из нескольких слоев, или зон. Поэтому сперматозоиды вынуждены еще и растворять ее специальными веществами. И ведь насколько интересно все устроено – в сперме миллионы сперматозоидов и только один достигнет в итоге цели. Остальные же просто играют роль помощников – одни гибнут в кислой среде влагалища, тем самым позволяя своим собратьям двигаться буквально по их телам вперед, а другие, раскручивая яйцеклетку и растворяя ее оболочки, помогают единственному призеру попасть внутрь. А вот кто будет тем самым призером – это решает его величество случай. Все спекуляции на тему «вы появились от самого быстрого и сильного сперматозоида» не верны, так как сперматозоиды, достигшие яйцеклетки, все одинаково сильные и быстрые. Просто ваш – самый удачливый.

Как только тот самый удачливый сперматозоид проник внутрь и оплодотворил яйцеклетку, ее оболочка становится невосприимчива к попыткам остальных попасть внутрь. Джекпот выигран, остальные остались не у дел.

Образование и развитие зародыша

После проникновения сперматозоида внутрь яйцеклетки их ядра сливаются и образуют первую клетку будущего организма – зиготу. При этом материнские хромосомы и отцовские образуют полный генный набор будущего организма. В среднем через сутки зигота начинает делиться, двигаясь одновременно по маточной трубе к полости матки. Сначала зигота делится на 2 клетки, потом на 4, затем на 8 и так далее. Ниже на фото как раз и показаны эти стадии. В итоге из одной клетки получаются целые триллионы!

Первые 3-5 суток зародыш получает питание из тех веществ, которые содержались в самой яйцеклетке. Далее она уже имплантируется в матку (в ее внутренний слой – эндометрий) и образует плаценту, питающую будущего ребенка вплоть до момента рождения. Соответственно, примерно через две недели при отсутствии менструации женщина может предположить, что беременна.

Надо отметить, что иногда при овуляции в маточные трубы выходят две яйцеклетки, каждая из которых может оплодотвориться отдельным сперматозоидом. В таком случае получаются разнояйцевые близнецы (яйцеклетку еще называют просто «яйцом», «ovo» по-гречески. Отсюда и пошло слово «овуляция»). Однояйцевые же получаются, соответственно, из одной яйцеклетки, но разделенной в момент первого деления на две самостоятельных зиготы. Поэтому и получается, что однояйцевые близнецы – копия друг друга, а разнояйцевые – нет.

В мире хромосом и генов

Как мы уже выяснили, при зачатии случайным образом закладываются все передающиеся по наследству характеристики ребенка – физические данные, пол, группа крови, цвет глаз, волос и так далее. Причем ребенку генов достается поровну – по 23 хромосомы от отца и матери (гены располагаются в хромосомах). Развитие ребенка во время беременности, в младенчестве, детстве и далее во многом будет подчинено именно этой программе.

Однако только лишь одна пара хромосом определяет пол ребенка. Мужчины имеют пару ХУ, а женщины – ХХ. Это последняя, 23 пара хромосом. Соответственно, выходит, что одна Х-хромосома у будущего ребенка обязательно от матери. Вторая же хромосома зависит от того, какой сперматозоид первым достиг яйцеклетки. Если он нес в себе Х-хромосому – будет девочка (ХХ). Если же У – будет мальчик (ХУ). Причем интересно, что сперматозоиды, несущие Х-хромосому, передвигаются медленнее несущих У-хромосому, но они более живучие. Поэтому если оплодотворение произошло через двое-трое суток после полового акта, то высока вероятность рождения мальчика. Если же позднее – то девочки. На этом основан метод планирования пола будущего ребенка.

Вот вроде и все. Если что-то не понятно или появились вопросы – пишите в комментах.

Оплодотворение - это процесс слияния половых клеток. Образующаяся в результате оплодотворения диплоидная клетка - зигота - представляет собой начальный этап развития нового организма.

Процесс оплодотворения складывается из трех последовательных фаз: а) сближения гамет; б) активации яйцеклетки; в) слияния гамет, или сингамии.

1. Сближение сперматозоида с яйцеклеткой обеспечивается совокупностью неспецифических факторов, повышающих вероятность их встречи и взаимодействия. К ним относят скоординированность наступления готовности к оплодотворению у самца и самки, поведение самцов и самок, обеспечивающее совокупление и осеменение, избыточную продукцию сперматозоидов, крупные размеры яйцеклетки, а также вырабатываемые яйцеклетками и сперматозоидами химические вещества, способствующие сближению и взаимодействию половых клеток. Эти вещества, называемые гамонами (гормоны гамет), с одной стороны, активируют движение сперматозоидов, а с другой - их склеивание. В особой структуре сперматозоида - акросоме -локализуются протеолитические ферменты. У млекопитающих большое значение имеет пребывание сперматозоидов в половых путях самки, в результате чего мужские половые клетки приобретают оплодотворяющую способность (капацитация), т.е. способность к акросомной реакции.

В момент контакта сперматозоида с оболочкой яйцеклетки происходит акросомная реакция, во время которой под действием протеолитических ферментов акросомы яйцевые оболочки растворяются. Далее плазматические мембраны яйцеклетки и сперматозоида сливаются и через образующийся вследствие этого цитоплазматический мостик цитоплазмы обеих гамет объединяются. Затем в цитоплазму яйца переходят ядро и центриоль сперматозоида, а мембрана сперматозоида встраивается в мембрану яйцеклетки. Хвостовая часть сперматозоида у большинства животных тоже входит в яйцо, но потом отделяется и рассасывается, не играя какой-либо роли в дальнейшем развитии.

2. В результате контакта сперматозоида с яйцеклеткой происходит ее активация. Она заключается в сложных структурных и физико-химических изменениях. Благодаря тому что участок мембраны сперматозоида проницаем для ионов натрия, последние начинают поступать внутрь яйца, изменяя мембранный потенциал клетки. Затем в виде волны, распространяющейся из точки соприкосновения гамет, происходит увеличение содержания ионов кальция, вслед за чем также волной растворяются кортикальные гранулы. Выделяемые при этом специфические ферменты способствуют отслойке желточной оболочки; она затвердевает, это оболочка оплодотворения. Все описанные процессы представляют собой так называемую кортикальную реакцию. Одним из значений кортикальной реакции является предотвращение полиспермии, т.е. проникновения в яйцеклетку более одного сперматозоида. У млекопитающих кортикальная реакция не вызывает образования оболочки оплодотворения, но суть ее та же.

У таких животных, как морской еж, костистые рыбы и земноводные, все изменения цитоплазмы сопровождаются видимыми морфологическими перестройками. Эти явления получили название расслоения или сегрегации плазмы. Значение ее для дальнейшего эмбрионального развития будет рассмотрено ниже.

Активация яйцеклетки завершается началом синтеза белка на трансляционном уровне, поскольку мРНК, тРНК, рибосомы и энергия были запасены еще в овогенезе. Активация яйцеклетки может начаться и протекать до конца без ядра сперматозоида и без ядра яйцеклетки, что доказано опытами по энуклеации зиготы.

3. Яйцеклетка в момент встречи со сперматозоидом обычно находится на одной из стадий мейоза, заблокированной с помощью специфического фактора. У большинства позвоночных этот блок осуществляется на стадии метафазы II; у многих беспозвоночных, а также у трех видов млекопитающих (лошади, собаки и лисицы) блок происходит на стадии диакинеза. В большинстве случаев блок мейоза снимается после активации яйцеклетки вследствие оплодотворения. В то время как в яйцеклетке завершается мейоз, ядро сперматозоида, проникшее в нее, видоизменяется. Оно принимает вид интерфазного, а затем профазного ядра. За это время удваивается ДНК и мужской пронуклеус получает количество наследственного материала, соответствующего п2с, т.е. содержит гаплоидный набор редуплицированных хромосом.

Ядро яйцеклетки, закончившее мейоз, превращается в женский пронуклеус, также приобретая п2с. Оба пронуклеуса проделывают сложные перемещения, затем сближаются и сливаются (синкарион), образуя общую метафазную пластинку. Это, собственно, и есть момент окончательного слияния гамет - сингамия. Первое митотическое деление зиготы приводит к образованию двух клеток зародыша (бластомеров) с набором хромосом 2n2c в каждом.

23. Эмбриональное развитие организма. Дробление. Типы дробления, Гаструляция, способы гаструляции.

Дробление

Сущность стадии дробления. Дробление - это ряд последовательных митотических делений зиготы и далее бластомеров, заканчивающихся образованием многоклеточного зародыша - бластулы. Первое деление дробления начинается после объединения наследственного материала пронуклеусов и образования общей метафазной пластинки. Возникающие при дроблении клетки называют бластомерами (от греч. бласте-росток, зачаток). Особенностью митотических делений дробления является то, что с каждым делением клетки становятся все мельче и мельче, пока не достигнут обычного для соматических клеток соотношения объемов ядра и цитоплазмы. У морского ежа, например, для этого требуется шесть делений и зародыш состоит из 64 клеток. Между очередными делениями не происходит роста клеток, но обязательно синтезируется ДНК.

Все предшественники ДНК и необходимые ферменты накоплены в процессе овогенеза. В результате митотические циклы укорочены и деления следуют друг за другом значительно быстрее, чем в обычных соматических клетках. Сначала бластомеры прилегают друг к другу, образуя скопление клеток, называемое морулой. Затем между клетками образуется полость - бластоцель, заполненная жидкостью. Клетки оттесняются к периферии, образуя стенку бластулы - бластодерму. Общий размер зародыша к концу дробления на стадии бластулы не превышает размера зиготы.

Главным результатом периода дробления является превращение зиготы в многоклеточный односменный зародыш.

Морфология дробления. Как правило, бластомеры располагаются в строгом порядке друг относительно друга и полярной оси яйца. Порядок, или способ, дробления зависит от количества, плотности и характера распределения желтка в яйце. По правилам Сакса - Гертвига клеточное ядро стремится расположиться в центре свободной от желтка цитоплазмы, а веретено клеточного деления - в направлении наибольшей протяженности этой зоны.

В олиго- и мезолецитальных яйцах дробление полное, или голобластическое. Такой тип дробления встречается у миног, некоторых рыб, всех амфибий, а также у сумчатых и плацентарных млекопитающих. При полном дроблении плоскость первого деления соответствует плоскости двусторонней симметрии. Плоскость второго деления проходит перпендикулярно плоскости первого. Обе борозды первых двух делений меридианные, т.е. начинаются на анимальном полюсе и распространяются к вегетативному полюсу. Яйцевая клетка оказывается разделенной на четыре более или менее равных по размеру бластомера. Плоскость третьего деления проходит перпендикулярно первым двум в широтном направлении. После этого в мезолецитальных яйцах на стадии восьми бластомеров проявляется неравномерность дробления. На анимальном полюсе четыре более мелких бластомера - микромеры, на вегетативном - четыре более крупных - макромеры. Затем деление опять идет в меридианных плоскостях, а потом опять в широтных.

В полилецитальных яйцеклетках костистых рыб, пресмыкающихся, птиц, а также однопроходных млекопитающих дробление частичное, или мероб-ластическое, т.е. охватывает только свободную от желтка цитоплазму. Она располагается в виде тонкого диска на анимальном полюсе, поэтому такой тип дробления называют дискоидальным.

При характеристике типа дробления учитывают также взаимное расположение и скорость деления бластомеров. Если бластомеры располагаются рядами друг над другом по радиусам, дробление называют радиальным. Оно типично для хордовых и иглокожих. В природе встречаются и другие варианты пространственного расположения бластомеров при дроблении, что определяет такие его типы, как спиральное у моллюсков, билатеральное у аскариды, анархичное у медузы.

Замечена зависимость между распределением желтка и степенью синхронности деления анимальных и вегетативных бластомеров. В олиголецитальных яйцах иглокожих дробление почти синхронное, в мезолецитальных яйцевых клетках синхронность нарушена после третьего деления, так как вегетативные бластомеры из-за большого количества желтка делятся медленнее. У форм с частичным дроблением деления с самого начала асинхронны и бластомеры, занимающие центральное положение, делятся быстрее.

Гаструляция

Сущность стадии гаструляции заключается в том, что однослойный зародыш - бластула - превращается в многослойный - двух- или трехслойный, называемый гаструлой (от греч. гастер - желудок в уменьшительном смысле).

У примитивных хордовых, например у ланцетника, однородная однослойная бластодерма во время гаструляции преобразуется в наружный зародышевый листок -эктодерму -и внутренний зародышевый листок - энтодерму. Энтодерма формирует первичную кишку с полостью внутри-гастроцель. Отверстие, ведущее в гастроцель, называют бластопором или первичным ртом. Два зародышевых листка являются определяющими морфологическими признаками гаструляции. Их существование на определенной стадии развития у всех многоклеточных животных, начиная с кишечнополостных и кончая высшими позвоночными, позволяет думать о гомологии зародышевых листков и единстве происхождения всех этих животных.

У позвоночных помимо двух упомянутых во время гаструляции образуется еще третий зародышевый листок - мезодерма, занимающая место между экто- и энтодермой. Развитие среднего зародышевого листка, представляющего собой хордомезодерму, является эволюционным усложнением фазы гаструляции у позвоночных и связано с ускорением у них развития на ранних стадиях эмбриогенеза. У более примитивных хордовых животных, таких, как ланцетник, хордомезодерма обычно образуется в начале следующей после гаструляции фазы - органогенезе. Смещение времени развития одних органов относительно других у потомков по сравнению с предковыми группами является проявлением гетерохронии. Изменение времени закладки важнейших органов в процессе эволюции встречается не редко.

Процесс гаструляции характеризуется важными, клеточными преобразованиями, такими, как направленные перемещения групп и отдельных клеток, избирательное размножение и сортировка клеток, начало цитодифференцировки и индукционных взаимодействий. Перечисленные клеточные механизмы онтогенеза подробно разбираются в гл. 8.2.

Рис. 7.3. Презумптивные зачатки, гаструляция и нейруляция у ланцетника.

А - презумптивные зачатки на стадии бластулы (вид снаружи) и ранней гаструлы (вид на срезе); Б - поздняя гаструла и нейруляция на сагиттальном (левый ряд) и поперечном (правый ряд) разрезах; В - пластическая модель зародыша в конце периода нейруляции:

1-анимальный полюс, 2-вегетативный полюс, 3-бластоцель, 4-гастроцель, 5-спинная и брюшная губы бластопора, 6 - головной конец зародыша, 7- модулярная пластинка, 8 - хвостовой конец зародыша, 9-спинная часть мезодермы, 10-полость вторичной кишки. 11 -сегментированные сомиты, 12-брюшная часть мезодермы; а, б, в, г, д - обозначения презумптивных и развивающихся органов: а - эктодерма кожная, б - нервная трубка, в - хорда, г - эндотерма, эпителий кишки, д -мезодерма


Похожая информация.